Industriestraße 2, 26899 Rhede Tel. 04964 / 604 320 Fax 604 321

Opdracht-Nr.: 4010

Bewerker: V.Seel

STATISCHE BEREKENING

Bouwwerk **Nieuwbouw woning**

Behoort bij besluit van Burgemeester en Wethouders

datum: 16 mei 2018

gemeente Tynaarlo

Opdrachtgever:

Bouwterrein Berkenweg 23

te Zuidlaren

Ontwerp **Tieben Vastgoed**

Floralaan 18

9581 TX Musselkanaal

Grondslaag Tekening in Maatstaf 1:100

Bouwstoffen Beton en Gewapend Beton : C 20/25

> Betonstaal : BST 500 M, BSt 500 S : S235 JRG2 (RSt 37-2) Bouw Profielstaal

: CS 12-1.8 Muurwerk C24 Hout

Bodem volgens bodemonderzoek.

INHOUDSOPGAVE

Position	Titel/Bauteil	Seite
Algemeen		
	VERGLIJKING EUROCODES DUITSLAND-NEDERLAND	3
	RAPPORT CONSTRUCTIEVE UITGANGSPUNTEN	4
1. Kap		
1.01	SPORENKAP	6
1.02	SPORENKAP	16
1.03	ENKELE SPOREN	26
1.04	HOEKKEPER	32
1.05	SPORENKAP	39
1.06	NOKGORDING	48
1.07	GORDING	52
1.08	GORDING	57
1.09	HOUTEN LIGGER	61
1.10	MUURPLAAT	65
2. Verdiepi	ng	
2.01	STALEN SPANT	71
2.02	STALEN SPANT	82
2.03	STB-BALK op MW (Constructief)	93
2.04	BETONPIJLAR	94
2.05	BETONPIJLAR	99
3. Begane g	rond	
3.01	VERDIEPINGSVLOER	105
3.02	STB-LIGGER (pcae)	143
3.03	STB-LIGGER (pcae)	143
3.04	HOUTEN BALKLAAG	146
3.05	HOUTEN LIGGER	149
3.06	STALEN KOLOM	153
4. Funderin	a	
4.01	BEGANE GRONDVLOER	159
4.02	BUITEN FUNDERINGSSTROOK	186

Buchweizenweg 14 49716 Meppen Tel. 05931 / 597-650 Fax 05931 / 597-651 info@ing-grummel.de Industriestraße 2 26899 Rhede Tel. 04964 / 604-320 Fax 04964 / 604-321 info@ing-grummel.de

Project: Nieuwbouw woning

Opdrachtgever:

Locatie: Berkenweg 23, te Zuidlaren

Aanvulling voor de constructieberekening:

Vergelijking nationale bijlagen eurocodes duitsland - nederland

Eurocode / Paragraaf	Parameter	Nationale bijlage Duitsland	Nationale bijlage Nederland	Meegenomen in berekening
EN1990+A1+ A1/C2/NB: Tabel NB.1 – 2.1	Ontwerplevensduur, klasse, jaren	n.v.t.	Klasse 3, 50 jaren	Klasse 3, 50 jaren
EN1990+A1+ A1/C2/NB: Tabel NB.2 – A1.1	ψ-faktoren voor gebouwen, Categorie A, woon- en verbleijfsruimtes	$\psi 0 = 0.70$ $\psi 1 = 0.50$ $\psi 2 = 0.30$	$\psi 0 = 0.40$ $\psi 1 = 0.50$ $\psi 2 = 0.30$	$\psi 0 = 0.70$ $\psi 1 = 0.50$ $\psi 2 = 0.30$
EN1990+A1+ A1/C2/NB: Tabel NB.3 – A1.2(A), Tabel NB.4 – A1.2(B)	γ-faktoren van belastingen (veiligheidsfaktoren)	$\gamma(G) = 1.35$ $\gamma(Q) = 1.50$	$\gamma(G) = 1.35$ $\gamma(Q) = 1.50$	$\gamma(G) = 1.35$ $\gamma(Q) = 1.50$
EN 1991-1-1+C1/NB, §6.3.1, Tabel NB.1 – 6.2, veranderlijke	Opgelegde belastingen voor gebouwen: Klasse A, vloeren in woningen	qk = 1.50 kN/m ² Qk = 1,00 kN	qk = 1.75 kN/m ² Qk = 3,00 kN	qk = 1.75 kN/m ² Qk = 3,00 kN
EN 1991-1-3+C1/NB, §4.1, sneeuw	Sneeuwbelasting	Zone 1: sk= 0.65 kN/m ² Zone 2: sk= 0.85 kN/m ² Zone 3: sk= 1.10 kN/m ²	Elke locatie: sk = 0.70 kN/m²	sk = 0.70 kN/m²
EN 1991-1-3+C1/NB, §5.3, sneeuw	Sneeuwbelasting op zadeldaken	30° < α < 60°: μ1 = 0,8(60 - ∠) / 30	30° < α < 60°: μ1 = 0,8(60 - ∠) / 30 μ2 = 1,2(60 - ∠) / 30	$\angle 40, \angle 50$ $\mu 1 = 0,53, \mu 1 = 0,27$ $\mu 2 = 0,80, \mu 2 = 0,40$
EN 1991-1-4+A1 +C2/NB, wind	Extreme stuwdruk in kN/m² als functie van de hoogte	NA.B.3.2, Tabel NA.B.3, Windzone 3, "Binnenland": qw = 0,47 kN/m²	§4.5, Tabel NB.5, Gebied II,onbebouw., h=7,30 m: qw = 0,76 kN/m ²	qw = 0,76 kN/m ² * 0,70 * 0,95 = 0,51 kN/m ²
EN 1991-1-4+A1 +C2/NB, §7.2.5, winddruk en -zuiging	Uitwendige drukcoefficienten voor zadeldaken, cpe,10, ∠ = +50°	F,G: + 0,70 H: + 0,70 I: - 0,20 J: - 0,30	F,G: + 0,70 H: + 0,60 I: - 0,20 J: - 0,30	F,G: +0,70 H: +0,60 I: -0,20 J: -0,30
EN 1992-1-1+ C2/NB, §2.4.2.4, Tabel 2.1N, betonconstructies	Partiele factoren voor materialen voor uiterste grens- toestanden	γc voor beton: γc = 1,50 γs voor betonstaal: γs = 1,15	γc voor beton: γc = 1,50 γs voor betonstaal: γs = 1,15	γc voor beton: γc = 1,50 γs voor betonstaal: γs = 1,15

INGENIEURBÜRO GRUMMEL ** BUCHWEIZENWEG 14 ** 49716 MEPPEN Projekt 4010 Leever Seite 4

RAPPORT CONSTRUCTIEVE UITGANGSPUNTEN

Algemeen:

type gebouw woning veiligheidsklasse 2 referentieperiode 50 jaar

Materialen

betonkwaliteit en milieukl. bovenbouw: C20/25,mk.XC1

fundering: C20/25,mk.XC2

betonstaalkwaliteit FeB500 HWL(staven)

Feb500 HKN(netten)

staalkwaliteit S235 JRG2

houtkwaliteit C24

Betondekking

vloeren nom c=2,50 cm fundering nom c=3,50 cm

Kwaliteit muurwerk

Algemeen: CS 12 - 1.8; 1,85 kg/dm 3 Geconcentreerde lasten: CS 20 - 1.8; 1,85 kg/dm 3

Belastingen en vervorming:

Wind

gebied II, onbebouwd, h = 7.30 m Pw = 0.76 kN/m²

Sneeuwbelasting

 $Psn;rep = 0,70 kN/m^2$

Gewichtsberekening Dak:

Permanente belasting

dakbepl. en dakpannen etc. $Pg;rep = 0.55 \text{ kN/m}^2$ plafond $Pg;rep = 0.35 \text{ kN/m}^2$

Gewichtsberekening Zoldervloer:

Permanente belasting

Gewichtsberekening Plat dak erker:

Permanente belasting

Veranderlijke belasting

plat dak $Pq:rep = 1,00 \text{ kN/m}^2$

Gewichtsberekening Verdiepingsvloer:

Permanente belasting

betonvloer = $25,00 \text{ kN/m}^3$ afwerklaag Pg;rep = $1,50 \text{ kN/m}^2$

Veranderlijke belasting

algemeen $Pq;rep = 1,75 \text{ kN/m}^2$ lichte wanden $Pq;rep = 1,20 \text{ kN/m}^2$

Gewichtsberekening Begane grondvloer:

Permanente belasting

betonvloer = $25,00 \text{ kN/m}^3$ afwerklaag Pg;rep = $1,50 \text{ kN/m}^2$

Veranderlijke belasting

Fundering

op Staal en op betonplaat op verende beding. er wordt grondverbetering toegepast.

INGENIEURBÜRO GRUMMEL ** BUCHWEIZENWEG 14 ** 49716 MEPPEN Projekt 4010 Leever Pos 1.01 Seite 6

POS.1.01 SPORENKAP

Programm: 062F, Vers: 01.03.004 12/2017

Grundlagen: DIN EN 1990/NA: 2010-12

DIN EN 1991-1-1/NA: 2010-12 DIN EN 1995-1-1/NA: 2013-08

System

- Flächentragwerk, Trägerabstand 80.0 cm

System 9.4000

Feldlängen in Z-Richtung

Feld		Kr.li	1	2	3	4	Kr.re
Länge x	[m]	0.500	3.200	1.000	1.000	3.200	0.500
Winkel	[Grad]	40.000	40.000	40.000	-40.000	-40.000	-40.000
Höhe h	[m]	0.420	2.685	0.839	-0.839	-2.685	-0.420
Stabläng	es[m]	0.653	4.177	1.305	1.305	4.177	0.653
Nutzungs	klasse	2	1	1	1	1	2

Auflager	des	Sparrens
----------	-----	----------

Aufla	ger des	Sparrens		- Lageru	ing / Federn	/ Gelenke -
Nr.	Ort	Kerve	la	Cw,z	Cw,x	Gm
[-]	[m]	[cm]	[cm]		[kN/cm]	[kNm/cm/m]
1	0.50	4.0	6.2	fest	fest	_
2	3.70	4.0	6.2	fest	_	_
3	4.70	0.0	0.0	-	_	Gelenk
4	5.70	4.0	6.2	fest	_	-
5	8.90	4.0	6.2	fest	fest	-

Kehlriegel

	Höhe ab		Nutzungs-
Nr.	Traufpunkt	Länge	klasse
[-]	[m]	[m]	[-]
1	2.69	2.00	1

Einwirkungen

Angaben zum Bauort

Bauort: Zuidlaren Bauort: Zuidlaren Geländehöhe $\ddot{u}NN = 0$ m

Winddaten

Windansatz: eigene Vorgaben

Basisgeschwindigkeit vb = 27.50 m/s, $-\text{druck qb} = 0.63 \text{ kN/m}^2$

Schneedaten

Schneelastzone 1, Schneeansatz: freie Eingabe Schneewichte Gamma = 2.00 kN/m³ Schneelast sk = 0.80 kN/m²

Parameter für Wind- und Schneelasten

Windrichtungen: Ansatz aller Richtungen

Geschlossenes Gebäude ohne Innendruck

System: Satteldach

Dachabmessungen: Breite/Länge/Höhe = 9.40 / 13.24 / 7.30 m

Firstabstand: = 4.70 m

Dachüberstand: li/re/vo/hi = 0.50 / 0.50 / - / - m

EWG 000 - Eigenge... Kat.G - Ständige Ein...

EWG 000 - Eigenge... Kat.G - Ständige Ein...

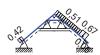
EWG 300 - Schnee-... Kat.Q,S1 - Schnee-,...

EWG 301 - Schnee-... Kat.Q,S1 - Schnee-,...

EWG 302 - Schnee-... Kat.Q,S1 - Schnee-,...

EWG 400 - Wind 0°, ... Kat.Q,W - Windlasten

EWG 401 - Wind 0°, ... Kat.Q,W - Windlasten


EWG 402 - Wind 0°, ... Kat.Q,W - Windlasten

EWG 403 - Wind 0°, ... Kat.Q,W - Windlasten

EWG 404 - Wind 180... Kat.Q,W - Windlasten

EWG 405 - Wind 180... Kat.Q,W - Windlasten

EWG 406 - Wind 180... Kat.Q,W - Windlasten

EWG 407 - Wind 180... Kat.Q,W - Windlasten

EWG 408 - Wind 90°,... Kat.Q,W - Windlasten

EWG 409 - Wind 90°,... Kat.Q,W - Windlasten

EWG 410 - Wind 90°,... Kat.Q,W - Windlasten

EWG 411 - Wind 90°,... Kat.Q,W - Windlasten

EWG	Einwirkungsgruppe
300	Schnee-Volllast
301	Schnee-Abtauen li

301 Schnee-Abtauen links

302 Schnee-Abtauen rechts

400 Wind 0°, Bereich F,H,J,I,D,E 401 Wind 0°, Bereich F,H,J,I,D,E

402 Wind 0°, Bereich F,H,J,I,D,E

403 Wind 0°, Bereich F,H,J,I,D,E 404 Wind 180°, Bereich I,J,H,F,E

404 Wind 180°, Bereich I,J,H,F,E,D 405 Wind 180°, Bereich I,J,H,F,E,D

406 Wind 180°, Bereich I,J,H,F,E,D 407 Wind 180°, Bereich I,J,H,F,E,D

408 Wind 90°, Bereich F,G,F,A 409 Wind 90°, Bereich H,B

410 Wind 90°, Bereich I,B

EWG Einwirkungsgruppe

411 Wind 90°, Bereich I,C

Erläuterungen zu den Einwirkungen

- q = Vertikale Streckenlast bezogen auf die Stablänge
- qZ = Globale Streckenlast in Z-Richtung
- qz = Lokale Streckenlast in z-Richtung
- a = horizontaler Abstand [m] vom Systemanfang
- c = horizontale Lastlänge [m]

Einwirkungen auf den Sparren

Streckeneinwirkungen [kN/m]

				а	C	Betra	.g , k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Eigengewicht Sparren	q	G	0	0.00	9.40	0.10	0.10	_

Flächeneinwirkungen [kN/m²]

Einzugsbreite = 1.000 m

					G	Betra	~ 1 ₅	Abmin.
Einwirkung aus	Тт гго	Kat.	EWG	a [m]	С [m]	li.	re.	AbiiiIII. Alpha
Eindeckung		G G	0	0.00	9.40	0.55	0.55	AIPHa -
Ausbaulast	d đ	G	0	0.00	0.50	0.25	0.25	_
Ausbaulast	_	G	0	0.50	8.40	0.25	0.25	_
	q	G	0	8.90	0.50	0.35	0.35	_
Schnee-Volllast	q ~7			0.00	4.70	0.43	0.43	_
Scillee-volllast	qΖ	Q,S1	300 300					_
Schnee-Abtauen links	qΖ	Q,S1		4.70	4.70 4.70	0.43	0.43	_
Scillee-Abcadell IIIks	qZ ~7	Q,S1 Q,S1	301 301	0.00 4.70	4.70	0.43	0.43	_
Schnee-Abtauen rechts	qΖ							_
Schliee-Abtauen rechts	qΖ	Q,S1	302 302	0.00 4.70	4.70	0.43	0.43	_
Wind 0°, Bereich F	qΖ	Q,S1			4.70			_
	qz	Q,W	400	0.00	1.32	0.67	0.67	_
Wind 0°, Bereich H	qz	Q,W	400	1.32	3.38	0.51	0.51	
Wind 0°, Bereich D	qz	Q,W	400	0.00	0.50	-0.73		_
Wind 0°, Bereich E	qz	Q,W	400	8.90	0.50	0.42	0.42	-
Wind 0°, Bereich F	qz	Q,W	401	0.00	1.32	0.67	0.67	-
Wind 0°, Bereich H	qz	Q,W	401	1.32	3.38	0.51	0.51	_
Wind 0°, Bereich J	qz	Q,W	401	4.70	1.32	-0.35		-
Wind 0°, Bereich I	qz	Q,W	401	6.02	3.38	-0.25		-
Wind 0°, Bereich D	qz	Q,W	401	0.00	0.50	-0.73		_
Wind 0°, Bereich E	qz	Q,W	401	8.90	0.50	0.42	0.42	-
Wind 0°, Bereich F	qz	Q,W	402	0.00	1.32	-0.16		-
Wind 0°, Bereich H	qz	Q,W	402	1.32	3.38	-0.06		_
Wind 0°, Bereich D	qz	Q,W	402	0.00	0.50	-0.73		-
Wind 0°, Bereich E	qz	Q,W	402	8.90	0.50	0.42	0.42	-
Wind 0°, Bereich F	qz	Q,W	403	0.00	1.32	-0.16		-
Wind 0°, Bereich H	qz	Q,W	403	1.32	3.38	-0.06	-0.06	-
Wind 0°, Bereich J	qz	Q,W	403	4.70	1.32	-0.35	-0.35	-
Wind 0°, Bereich I	qz	Q,W	403	6.02	3.38	-0.25	-0.25	_
Wind 0°, Bereich D	qz	Q,W	403	0.00	0.50	-0.73	-0.73	-
Wind 0°, Bereich E	qz	Q,W	403	8.90	0.50	0.42	0.42	_
Wind 180°, Bereich H	qz	Q,W	404	4.70	3.38	0.51	0.51	-
Wind 180°, Bereich F	qz	Q,W	404	8.08	1.32	0.67	0.67	-
Wind 180°, Bereich E	qz	Q,W	404	0.00	0.50	0.42	0.42	-
Wind 180°, Bereich D	qz	Q,W	404	8.90	0.50	-0.73	-0.73	-
Wind 180°, Bereich I	qz	Q,W	405	0.00	3.38	-0.25	-0.25	-
Wind 180°, Bereich J	qz	Q,W	405	3.38	1.32	-0.35	-0.35	_
Wind 180°, Bereich H	qz	Q,W	405	4.70	3.38	0.51	0.51	-
Wind 180°, Bereich F	qz	Q,W	405	8.08	1.32	0.67	0.67	-
Wind 180°, Bereich E	qz	Q,W	405	0.00	0.50	0.42	0.42	-

INGENIEURBÜRO	GRUMMEL	* *	BUCHWEIZENWEG	14	* *	49716	MEPPEN
Projekt 4010	Leever			Pos	s 1.	01	Seite 9

				a	С	Betra	ag,k	Abmin.
Einwirkung aus	Tvp	Kat.	EWG	[m]	[m]	li.	J .	Alpha
Wind 180°, Bereich D	qz	Q,W	405	8.90	0.50	-0.73		-
Wind 180°, Bereich H	qz	Q,W	406	4.70	3.38	-0.06	-0.06	_
Wind 180°, Bereich F	qz	Q,W	406	8.08	1.32	-0.16	-0.16	_
Wind 180°, Bereich E	qz	Q,W	406	0.00	0.50	0.42	0.42	_
Wind 180°, Bereich D	qz	Q,W	406	8.90	0.50	-0.73	-0.73	_
Wind 180°, Bereich I	qz	Q,W	407	0.00	3.38	-0.25	-0.25	_
Wind 180°, Bereich J	qz	Q,W	407	3.38	1.32	-0.35	-0.35	_
Wind 180°, Bereich H	qz	Q,W	407	4.70	3.38	-0.06	-0.06	_
Wind 180°, Bereich F	qz	Q,W	407	8.08	1.32	-0.16	-0.16	-
Wind 180°, Bereich E	qz	Q,W	407	0.00	0.50	0.42	0.42	-
Wind 180°, Bereich D	qz	Q,W	407	8.90	0.50	-0.73	-0.73	-
Wind 90°, Bereich F	qz	Q,W	408	0.00	2.35	-1.05	-1.05	_
Wind 90°, Bereich G	qz	Q,W	408	2.35	2.35	-1.34	-1.34	_
	qz	Q,W	408	4.70	2.35	-1.34	-1.34	-
Wind 90°, Bereich F	qz	Q,W	408	7.05	2.35	-1.05	-1.05	-
Wind 90°, Bereich A	qz	Q,W	408	0.00	0.50	1.14	1.14	-
	qz	Q,W	408	8.90	0.50	1.14	1.14	-
Wind 90°, Bereich H	qz	Q,W	409	0.00	4.70	-0.83	-0.83	-
	qz	Q,W	409	4.70	4.70	-0.83		-
Wind 90°, Bereich B	qz	Q,W	409	0.00	0.50	0.76	0.76	-
	qz	Q,W	409	8.90	0.50	0.76	0.76	-
Wind 90°, Bereich I	qz	Q,W	410	0.00	4.70	-0.48	-0.48	-
	qz	Q,W	410	4.70	4.70	-0.48		_
Wind 90°, Bereich B	qz	Q,W	410	0.00	0.50	0.76		-
	qz	Q,W	410	8.90	0.50	0.76		-
Wind 90°, Bereich I	qΖ	Q,W	411	0.00	4.70	-0.48		-
	qz	Q,W	411	4.70	4.70	-0.48		-
Wind 90°, Bereich C	qz	Q,W	411	0.00	0.50	0.48		-
	qz	Q,W	411	8.90	0.50	0.48	0.48	-

Einwirkungen auf den Kehlriegel 1

Streckeneinwirkungen [kN/m]

				a	C	Betra	ıg,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Eigengewicht Kehlriegel	q	G	0	0.00	2.00	0.10	0.10	-

Flächeneinwirkungen [kN/m²]

Einzugsbreite = 1.000 m

				a	C	Betra	ıg,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Ausbau	a	G	0	0.00	2.00	0.30	0.30	

Kategorien und Kombinationsbeiwerte

Kate-			Komb	Beiw	erte
gorie	Bezeichnung	KLED	Psi0	Psi1	Psi2
G	Ständige Einwirkungen	ständig	-	-	-
Q,S1	Schnee-,Eislasten: Höhe <= NN +1000 m	kurz	0.50	0.20	_
Q,W	Windlasten	kurz	0.60	0.20	-

Lastfälle:

Nr.	Bezeichnung	EWG
1	Eigengewicht	0

2 Eigengewicht + Schnee-Volllast

Nr.	Bezeichnung	EWG
3	Eigengewicht + Schnee-Abtauen links	0,301
4	Eigengewicht + Schnee-Abtauen rechts	0,302
5	Eigengewicht + Wind 0°, Bereich F,H,J,I,D,E	0,400
6	Eigengewicht + Wind 0°, Bereich F,H,J,I,D,E	0,401
7	Eigengewicht + Wind 0°, Bereich F,H,J,I,D,E	0,402
8	Eigengewicht + Wind 0°, Bereich F,H,J,I,D,E	0,403
9	Eigengewicht + Wind 180°, Bereich I,J,H,F,E,D	0,404
10	Eigengewicht + Wind 180°, Bereich I,J,H,F,E,D	0,405
11	Eigengewicht + Wind 180°, Bereich I,J,H,F,E,D	0,406
12	Eigengewicht + Wind 180°, Bereich I,J,H,F,E,D	0,407
13	Eigengewicht + Wind 90°, Bereich F,G,F,A	0,408
14	Eigengewicht + Wind 90°, Bereich H,B	0,409
15	Eigengewicht + Wind 90°, Bereich I,B	0,410
16	Eigengewicht + Wind 90°, Bereich I,C	0,411
17	<pre>Eigengewicht + Schnee-Volllast + Wind 0°, Bereich F,H,J,I D,E</pre>	, 0,300,400
18	<pre>Eigengewicht + Schnee-Volllast + Wind 0°, Bereich F,H,J,I D,E</pre>	, 0,300,401
19	<pre>Eigengewicht + Schnee-Volllast + Wind 180°, Bereich I,J,H F,E,D</pre>	, 0,300,404
20	<pre>Eigengewicht + Schnee-Volllast + Wind 180°, Bereich I,J,H F,E,D</pre>	, 0,300,405
21	Eigengewicht + Schnee-Abtauen links + Wind 0°, Bereich F, J,I,D,E	н, 0,301,400
22	<pre>Eigengewicht + Schnee-Abtauen links + Wind 0°, Bereich F, J,I,D,E</pre>	н, 0,301,401
23	Eigengewicht + Schnee-Abtauen links + Wind 180°, Bereich J,H,F,E,D	I, 0,301,404
24	Eigengewicht + Schnee-Abtauen links + Wind 180°, Bereich J,H,F,E,D	I, 0,301,405
25	<pre>Eigengewicht + Schnee-Abtauen rechts + Wind 0°, Bereich F H,J,I,D,E</pre>	, 0,302,400
26	<pre>Eigengewicht + Schnee-Abtauen rechts + Wind 0°, Bereich F H,J,I,D,E</pre>	, 0,302,401

_	Nr.	Bezeichnung	EWG
	27	Eigengewicht + Schnee-Abtauen rechts + Wind 180°, Bereich I,J,H,F,E,D	0,302,404
	28	Eigengewicht + Schnee-Abtauen rechts + Wind 180°, Bereich I,J,H,F,E,D	0,302,405

Kombinationen

KNr.	LF	BemSituation	Kombination	KLED
1	1	STR, P/T	Gsup	ständig
25	13	STR, P/T	Gsup + Q,W	kurz¹
35	17	STR, P/T	Gsup + Q , W + (Q ,S1)	kurz¹
63	24	STR, P/T	Gsup + Q , W + (Q ,S1)	kurz¹
71	26	STR, P/T	Gsup + Q , W + (Q ,S1)	kurz¹
81	1	GZG, char	G	ständig
104	18	GZG, char	G + Q,W + (Q,S1)	kurz¹

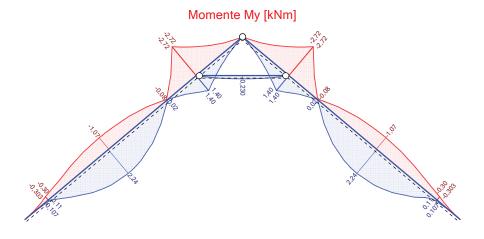
Erläuterungen

KLED : Klasse der Lasteinwirkungsdauer

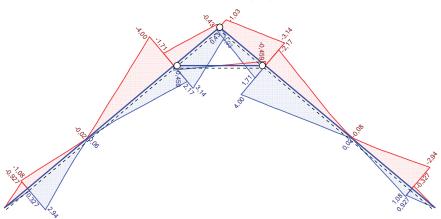
DIN EN 1995-1-1/NA:2010-12, 2.3.1.2 (2)P, Tabelle NA.1 Fußnote b Für kmod wird der Mittelwert zwischen kurz und sehr kurz verwendet.

Nachweise:

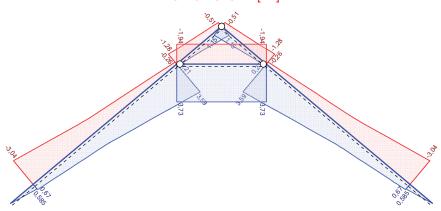
GZG : Gebrauchstauglichkeit


STR: Versagen oder übermäßige Verformungen des Tragwerks

Bemessungssituationen:


char : Charakteristisch

P/T : Ständig und vorübergehend


Schnittgrößen:

Querkräfte Vz [kN]

Normalkräfte Nx [kN]

Auflagerkräfte:

Stz.	x	min.AVd	max.AVd	min.AHd	max.AHd	min.Md	$\max.Md$
Nr.	[m]	[kN/	′m ——]	[kN,	/m ——]	[kNr	m/m ——]
1	0.500	1.071	5.123	-2.543	2.443	-	_
2	3.700	-1.992	10.694	_	_	-	_
4	5.700	-1.992	10.694	_	_	-	_
5	8.900	1.071	5.123	-2.443	2.543	-	_

Schnittgrößen für den Sparren:

Stützmomente, Querkräfte:

Stz.	x	min.Msd	max.Msd	min.Vld	max.Vrd	max.Vld	min.Vrd
Nr.	[m]	[kNm	n/m ——]	[kN	/m ——]	[kN	/m ——]
1	0.500	-0.378	0.133	-1.159	3.672	0.409	-1.351
2	3.700	-3.402	1.744	-5.001	3.921	2.715	-2.135
3	4.700	_	_	-0.536	0.536	1.292	-1.292
4	5.700	-3.402	1.744	-3.921	5.001	2.135	-2.715
5	8.900	-0.378	0.133	-3.672	1.159	1.351	-0.409

Feldmomente:

Ort	Länge [m]	<pre>max.Mfd [kNm/m]</pre>	zug.Nd [kN/m]	zug.x¹ [m]	min.Mfd [kNm/m]	zug.Nd [kN/m]	zug.x¹ [m]
Kr.li	0.653	0.133	0.388	0.653	-0.378	0.628	0.653
Feld 1	4.177	2.806	1.293	1.695	-3.402	4.494	4.177
Feld 2	1.305	1.744	-1.499	0.000	-3.402	-0.618	0.000
Feld 3	1.305	1.744	-1.499	1.305	-3.402	-0.618	1.305
Feld 4	4.177	2.806	1.293	2.483	-3.402	4.494	0.000
Kr.re	0.653	0.133	0.388	0.000	-0.378	0.628	0.000

1) Das zugehörige x bezieht sich auf das lokale Koordinatensystem des Stabes

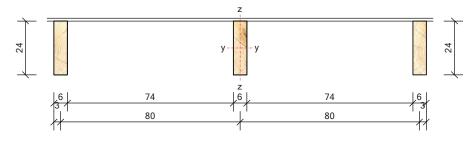
Schnittgrößen für den Kehlriegel:

Stützmomente, Querkräfte:

Stz.	X	min.Msd	max.Msd	min.Vld	max.Vrd	max.Vld	min.Vrd
Nr.	[m]	[kN	m/m ——]	[kN/	/m ——]	[kN,	/m ——]
1	3.700	_	_	_	0.574	-	0.425
2	5.700	_	_	-0.574	_	-0.425	_

Feldmomente:

	Länge	max.Mfd	zug.Nd	zug.x¹	min.Mfd	zug.Nd	zug.x¹
Ort	[m]	[kNm/m]	[kN/m]	[m]	[kNm/m]	[kN/m]	[m]
Feld 1	2.000	0.287	-1.074	1.000	0.000	-1.074	0.000


1) Das zugehörige x bezieht sich auf das lokale Koordinatensystem des Stabes

Bemessung Sparren

Baustoff: C24 (DIN EN 338)

Querschnitt: $1 \times b/h = 6/24 \text{ cm}$, e = 80.0 cm

Rechteck: b/h = 6/24 cm

Kennwerte: $A = 144.00 \text{ cm}^2$, $Wy = 576.00 \text{ cm}^3$, $Iy = 6912 \text{ cm}^4$ g = 0.07 kN/m, $Wz = 144.00 \text{ cm}^3$, $Iz = 432 \text{ cm}^4$

Grenzzustand der Tragfähigkeit

Parameter und Annahmen

- Querschnittsschwächungen infolge Kerven wurden berücksichtigt.
- vertikale Auflagerpressung auf nachfolgende Bauteile :
 - mit einseitiger Verlängerung der Kontaktlänge

Nachweise

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Stz. 2	71	6.17	Biegung und Zug $0.30/10.77 + 6.80/18.46 + 0.70 \times (0.00/2)$ um die y-Achse	22.17) 0.396
Stz. 4,	R 63	6.13	Schub 1.00 / 3.08 aus Vz	0.325

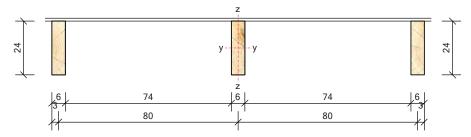
Nachweise

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Feld 1	35	NA.60	Biege- und Biegedrillknicken zweiachsig 0.00/(0.67x16.15) + 3.90/(0.75x18.46) + (0.00/22.17) ²	0.280
Feld 1		NA.61	Hauptrichtung: y-Achse, Ausweichen in y-Richtung 0.00/(0.06x16.15) + (3.90/(0.75x18.46)) ² 0.00/22.17 Hauptrichtung: z-Achse, Ausweichen in y-Richtung	
Stz. 2	71	6.3	Querdruck 1.53 / (1.00 x 1.92)	0.794

Grenzzustand der Gebrauchstauglichkeit

Nachweis der Verformung

Ort	KNr.	Gleichung	Zwischenwerte u	nd Details	Ausnutzung
Feld 1	104		Anfangsverformu	ng	
			0.31 / 1.39		0.226


Bemessung Kehlriegel 1

Baustoff: C24 (DIN EN 338)

Kennwerte [N/mm²]: fc,0,k = 21.0 fv,k = 4.0 E0,mean = 11000 fc,90,k = 2.5 fR,k = 1.0 E90,mean = 370 ft,0,k = 14.0 G,mean = 690 E0,05 = 7400 ft,90,k = 0.4 G,05 = 460 E90,05 = 247

Querschnitt: $1 \times b/h = 6/24 \text{ cm}$, e = 80.0 cm

Rechteck: b/h = 6/24 cm

Kennwerte: $A = 144.00 \text{ cm}^2$, $Wy = 576.00 \text{ cm}^3$, $Iy = 6912 \text{ cm}^4$ g = 0.07 kN/m, $Wz = 144.00 \text{ cm}^3$, $Iz = 432 \text{ cm}^4$

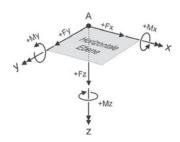
Grenzzustand der Tragfähigkeit

Nachweise

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Feld 1	25	6.17	Biegung und Zug $0.24/10.77 + 0.40/18.46 + 0.70 \times (0.00/40)$ um die y-Achse	22.17) 0.044
Stz. 1,R	1	6.13	Schub 0.07 / 1.85 aus Vz	0.038

Nachweise

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Feld 1	1	NA.60	Biege- und Biegedrillknicken zweiachsig	
			0.06/(0.95x9.69) + 0.40/(1.00x11.08) +	0.042
			(0.00/13.30) ²	
			Hauptrichtung: y-Achse, Ausweichen in y-	
			Richtung	
Feld 1		NA.61	$0.06/(0.23x9.69) + (0.40/(1.00x11.08))^{2}$	+ 0.028
			0.00/13.30	
			Hauptrichtung: z-Achse, Ausweichen in y-	
			Richtung	


Grenzzustand der Gebrauchstauglichkeit

Nachweis der Verformung

Ort	KNr.	Gleichung	Zwischenwerte	und	Details	Ausnutzung
Feld 1	81		Anfangsverform	ung		
			0.01 / 0.67			0.013

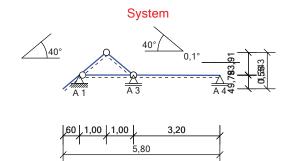
Weiterleitung der Einwirkungen (charakt.)

Die Kraftartrichtungen sind auf das globale Koordinatensystem bezogen. Dabei ist der Betrag der Kraftart $\,$ q in [kN/m].

Lager	Kraftart	Kategorie	Maximal	Minimal	Volllast
1	dx	G	-0.06	-0.06	-0.06
		Q,S1	-0.01	-0.02	-0.02
		Q,W	1.67	-1.64	1.67
		Summe,k	1.59	-1.72	1.59
	qz	G	2.44	2.44	2.44
		Q,S1	0.81	0.40	0.81
		Q,W	0.68	-0.91	-0.91
		Summe,k	3.93	1.93	2.34
2	дх	G	_	_	0.00
	qz	G	4.21	4.21	4.21
		Q,S1	1.27	0.54	1.27
		Q,W	2.71	-4.13	-4.13
		Summe,k	8.18	0.61	1.34
4	dх	G	_	_	0.00
	qz	G	4.21	4.21	4.21
	_	Q,S1	1.27	0.54	1.27
		Q,W	2.71	-4.13	-4.13
		Summe,k	8.18	0.61	1.34
5	дх	G	0.06	0.06	0.06
	1	Q,S1	0.02	0.01	0.02
		Q,W	1.64	-1.67	-1.67

Lager	Kraftart	Kategorie	Maximal	Minimal	Volllast
•		Summe,k	1.72	-1.59	-1.59
	qz	G	2.44	2.44	2.44
		Q,S1	0.81	0.40	0.81
		Q,W	0.68	-0.91	-0.91
		Summe,k	3.93	1.93	2.34

POS.1.02 SPORENKAP


Programm: 062F, Vers: 01.03.004 12/2017

Grundlagen: DIN EN 1990/NA: 2010-12

DIN EN 1991-1-1/NA: 2010-12 DIN EN 1995-1-1/NA: 2013-08

System

- Flächentragwerk, Trägerabstand 80.0 cm

Feldlängen in Z-Richtung

Feld		Kr.li	1	2	3
Länge x	[m]	0.600	1.000	1.000	3.200
Winkel	[Grad]	40.000	40.000	-40.000	-0.100
Höhe h	[m]	0.503	0.839	-0.839	-0.006
Stablänge s [m]		0.783	1.305	1.305	3.200
Nutzungsklasse		2	1	1	1

Aufla	ger des	Sparrens		- Lagerur	ng / Federn	/ Gelenke -
Nr.	Ort	Kerve	la	Cw,z	Cw,x	Gm
[-]	[m]	[cm]	[cm]		[kN/cm]	[kNm/cm/m]
1	0.60	4.0	6.2	fest	fest	-
2	1.60	0.0	0.0	_	-	Gelenk
3	2.60	4.0	6.2	fest	-	Gelenk
4	5.80	8.0	10.0	fest	-	_
Kehlr	iegel					
		Höhe ab				Nutzungs-
Nr.		Traufpunkt		Länge		klasse
[-]		[m]		[m]		[-]
1	·	0.00	·	2.00		1

Einwirkungen

Angaben zum Bauort

Bauort: Zuidlaren Bauort: Zuidlaren Geländehöhe üNN = 0 m

Winddaten

Windansatz: eigene Vorgaben

Basisgeschwindigkeit vb = 27.50 m/s, -druck qb = 0.63 kN/m²

Schneedaten

Schneelastzone 1, Schneeansatz: freie Eingabe

Schneewichte Gamma = 2.00 kN/m^3 Schneelast sk = 0.80 kN/m^2

Parameter für Wind- und Schneelasten

Windrichtungen: Ansatz aller Richtungen

Geschlossenes Gebäude ohne Innendruck

System: Satteldach

Dachabmessungen: Breite/Länge/Höhe = 5.80 / 13.24 / 7.30 m

Firstabstand: = 1.60 m

Dachüberstand: li/re/vo/hi = 0.60 / - / - m

EWG 000 - Eigenge... Kat.G - Ständige Ein...

EWG 000 - Eigenge... Kat.G - Ständige Ein...

EWG 300 - Schnee-... Kat.Q,S1 - Schnee-,...

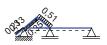
EWG 301 - Schnee-... Kat.Q,S1 - Schnee-,...

EWG 302 - Schnee-... Kat.Q,S1 - Schnee-,...

EWG 400 - Wind 0°, ... Kat.Q,W - Windlasten

EWG 401 - Wind 0°, ... Kat.Q,W - Windlasten

EWG 402 - Wind 0°, ... Kat.Q,W - Windlasten


EWG 403 - Wind 0°, ... Kat.Q,W - Windlasten

EWG 404 - Wind 180... Kat.Q,W - Windlasten

EWG 405 - Wind 180... Kat.Q,W - Windlasten

EWG 406 - Wind 180... Kat.Q,W - Windlasten

EWG 407 - Wind 180... Kat.Q,W - Windlasten

EWG 408 - Wind 180... Kat.Q,W - Windlasten

EWG 409 - Wind 180... Kat.Q,W - Windlasten

EWG 410 - Wind 90°,... Kat.Q,W - Windlasten

EWG 411 - Wind 90°,... Kat.Q,W - Windlasten

EWG 412 - Wind 90°,... Kat.Q,W - Windlasten

EWG 413 - Wind 90°,... Kat.Q,W - Windlasten

EWG	Einwirkungsgruppe
-----	-------------------

300 Schnee-Volllast

301 Schnee-Abtauen links

302 Schnee-Abtauen rechts

EWG	Einwi	rkungsgruppe
400	Wind	0°, Bereich F,H,J,I,D
401	Wind	0°, Bereich F,H,J,I,D
402	Wind	0°, Bereich F,H,J,I,D
403	Wind	0°, Bereich F,H,J,I,D
404	Wind	180°, Bereich I,J,H,F,E
405	Wind	180°, Bereich I,J,H,F,E
406	Wind	180°, Bereich I,J,H,F,E
407	Wind	180°, Bereich I,J,H,G,E
408	Wind	180°, Bereich I,J,H,F,E
409	Wind	180°, Bereich I,J,H,G,E
410	Wind	90°, Bereich F,G,F,A
411	Wind	90°, Bereich H,B
412	Wind	90°, Bereich I,B
413	Wind	90°, Bereich I,C

Erläuterungen zu den Einwirkungen

- q = Vertikale Streckenlast bezogen auf die Stablänge
- qZ = Globale Streckenlast in Z-Richtung
- qz = Lokale Streckenlast in z-Richtung
- a = horizontaler Abstand [m] vom Systemanfang
- c = horizontale Lastlänge [m]

Einwirkungen auf den Sparren

Streckeneinwirkungen [kN/m]

				a	C	Betra	.g,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Eigengewicht Sparren	q	G	0	0.00	5.80	0.10	0.10	_

Flächeneinwirkungen [kN/m²]

Einzugsbreite = 1.000 m

				a	С	Betra	.g , k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
PV-Panelen	q	G	0	2.00	1.00	0.25	0.25	_
Eindeckung	q	G	0	0.00	2.60	0.55	0.55	_
	q	G	0	2.60	3.20	0.20	0.20	_
Ausbaulast	q	G	0	0.00	5.80	0.35	0.35	_
Schnee-Volllast	qΖ	Q,S1	300	0.00	1.60	0.43	0.43	-
	qΖ	Q,S1	300	1.60	1.00	0.43	0.43	-
	qΖ	Q,S1	300	2.60	3.20	0.64	0.64	-
Schnee-Abtauen links	qΖ	Q,S1	301	0.00	1.60	0.21	0.21	-
	qΖ	Q,S1	301	1.60	1.00	0.43	0.43	-
	qΖ	Q,S1	301	2.60	3.20	0.64	0.64	-
Schnee-Abtauen rechts	qΖ	Q,S1	302	0.00	1.60	0.43	0.43	-
	qΖ	Q,S1	302	1.60	1.00	0.21	0.21	-
	qΖ	Q,S1	302	2.60	3.20	0.32	0.32	-
Wind 0°, Bereich F	qz	Q,W	400	0.00	1.32	0.67	0.67	-
Wind 0°, Bereich H	qz	Q,W	400	1.32	0.28	0.51	0.51	-
Wind 0°, Bereich J	qz	Q,W	400	2.60	0.32	0.19	0.19	-
Wind 0°, Bereich D	qz	Q,W	400	0.00	0.60	-0.76	-0.76	-
Wind 0°, Bereich F	qz	Q,W	401	0.00	1.32	0.67	0.67	-
Wind 0°, Bereich H	qz	Q,W	401	1.32	0.28	0.51	0.51	-
Wind 0°, Bereich J	qz	Q,W	401	1.60	1.00	-0.35	-0.35	-
	qz	Q,W	401	2.60	0.32	-0.57	-0.57	-
Wind 0°, Bereich I	qz	Q,W	401	2.92	2.88	-0.57	-0.57	-
Wind 0°, Bereich D	qz	Q,W	401	0.00	0.60	-0.76	-0.76	-
Wind 0°, Bereich F	qz	Q,W	402	0.00	1.32	-0.16	-0.16	-
Wind 0°, Bereich H	qz	Q,W	402	1.32	0.28	-0.06	-0.06	-
Wind 0°, Bereich J	qz	Q,W	402	2.60	0.32	0.19	0.19	-

				a	С	Betrag,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li. re.	Alpha
Wind 0°, Bereich D	qz	Q,W	402	0.00	0.60	-0.76 -0.76	_
Wind 0°, Bereich F	qz	Q,W	403	0.00	1.32	-0.16 -0.16	-
Wind 0°, Bereich H	qz	Q,W	403	1.32	0.28	-0.06 -0.06	-
Wind 0°, Bereich J	qz	Q,W	403	1.60	1.00	-0.35 -0.35	-
	qz	Q,W	403	2.60	0.32	-0.57 -0.57	_
Wind 0°, Bereich I	qz	Q,W	403	2.92	2.88	-0.57 -0.57	-
Wind 0°, Bereich D	qz	Q,W	403	0.00	0.60	-0.76 -0.76	_
Wind 180°, Bereich H	qz	Q,W	404	1.60	1.00	0.51 0.51	_
Wind 180°, Bereich E	qz	Q,W	404	0.00	0.60	0.48 0.48	_
Wind 180°, Bereich I	qz	Q,W	405	0.00	0.28	-0.25 -0.25	_
Wind 180°, Bereich J	qz	Q,W	405	0.28	1.32	-0.35 -0.35	_
Wind 180°, Bereich H	qz	Q,W	405	1.60	1.00	0.51 0.51	_
Wind 180°, Bereich E	qz	Q,W	405	0.00	0.60	0.48 0.48	_
Wind 180°, Bereich H	qz	Q,W	406	1.60	1.00	-0.06 -0.06	_
	qz	Q,W	406	2.60	1.88	-0.57 -0.57	_
Wind 180°, Bereich F	qz	Q,W	406	4.48	1.32	-1.62 -1.62	_
Wind 180°, Bereich E	qz	Q,W	406	0.00	0.60	0.48 0.48	_
Wind 180°, Bereich H	qz	Q,W	407	1.60	1.00	-0.06 -0.06	_
	qz	Q,W	407	2.60	1.88	-0.57 -0.57	_
Wind 180°, Bereich G	qz	Q,W	407	4.48	1.32	-1.14 -1.14	-
Wind 180°, Bereich E	qz	Q,W	407	0.00		0.48 0.48	-
Wind 180°, Bereich I	qz	Q,W	408	0.00	0.28	-0.25 -0.25	_
Wind 180°, Bereich J	qz	Q,W	408	0.28	1.32	-0.35 -0.35	_
Wind 180°, Bereich H	qz	Q,W	408	1.60	1.00	-0.06 -0.06	-
	qz	Q,W	408	2.60	1.88	-0.57 -0.57	_
Wind 180°, Bereich F	qz	Q,W	408	4.48	1.32	-1.62 -1.62	_
Wind 180°, Bereich E	qz	Q,W	408	0.00		0.48 0.48	_
Wind 180°, Bereich I	qz	Q,W	409	0.00	0.28	-0.25 -0.25	_
Wind 180°, Bereich J	qz	Q,W	409	0.28	1.32	-0.35 -0.35	_
Wind 180°, Bereich H	qz	Q,W	409	1.60	1.00	-0.06 -0.06	_
	qz	Q,W	409	2.60	1.88	-0.57 -0.57	-
Wind 180°, Bereich G	qz	Q,W	409	4.48	1.32	-1.14 -1.14	-
Wind 180°, Bereich E	qz	Q,W	409	0.00		0.48 0.48	-
Wind 90°, Bereich F	qz	Q,W	410	0.00	1.45	-1.05 -1.05	_
Wind 90°, Bereich G	qz	Q,W	410	1.45	0.15	-1.34 -1.34	-
	qz	Q,W	410 410	1.60	1.00 1.75	-1.34 -1.34	_
Wind 90°, Bereich F	qz	Q,W		2.60	1.45	-1.24 -1.24 -1.52 -1.52	_
Wind 90°, Bereich A	qz	Q,W	410 410	4.35		1.14 1.14	
Wind 90°, Bereich H	qz	Q,W Q,W	411	0.00	1.60	-0.83 -0.83	
WING 90 , Bereich if	qz	Q,W	411	1.60	1.00	-0.83 -0.83	
	qz qz	Q,W	411	2.60	3.20	-0.67 -0.67	_
Wind 90°, Bereich B	qz	Q,W	411	0.00		0.76 0.76	_
Wind 90°, Bereich I	qz	Q,W	412	0.00	1.60	-0.48 -0.48	_
Willa 30 , Beleich I	qz	Q,W	412	1.60	1.00	-0.48 -0.48	_
	qz	Q,W	412	2.60	3.20	-0.57 -0.57	_
Wind 90°, Bereich B	qz	Q,W	412	0.00		0.76 0.76	_
Wind 90°, Bereich I	qz	Q,W	413	0.00	1.60	-0.48 -0.48	_
	qz	Q,W	413	1.60	1.00	-0.48 -0.48	_
	qz	Q,W	413	2.60	3.20	-0.57 -0.57	_
Wind 90°, Bereich C	qz	Q,W	413	0.00	0.60	0.48 0.48	_
	-						

Einwirkungen auf den Kehlriegel 1

Streckeneinwirkungen [kN/m]

				a	C	Betra	ıg,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Eigengewicht Kehlriegel	a	G	0	0.00	2.00	0.10	0.10	_

Flächen	einv	wirkun	gen	[kN.	/m 2 1
r racmen	$C \perp I \perp I \wedge$	$v \perp \perp r \propto u \perp r$	4 C I I	1771	, ,,,,

Einzugsbreite = 1.000 m

				а	C	Betra	ıg,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Ausbau	q	G	0	0.00	2.00	0.30	0.30	_

Kategorien und Kombinationsbeiwerte

Kate-		KombBeiwer				
gorie	Bezeichnung	KLED	Psi0	Psi1	Psi2	
G	Ständige Einwirkungen	ständig	-	-	_	
Q,S1	Schnee-,Eislasten: Höhe <= NN +1000 m	kurz	0.50	0.20	_	
Q,W	Windlasten	kurz	0.60	0.20	_	

Lastfälle:

Nr.	Bezeichnung	EWG
1	Eigengewicht	0
2	Eigengewicht + Schnee-Volllast	0,300
3	Eigengewicht + Schnee-Abtauen links	0,301
4	Eigengewicht + Schnee-Abtauen rechts	0,302
5	Eigengewicht + Wind 0°, Bereich F,H,J,I,D	0,400
6	Eigengewicht + Wind 0°, Bereich F,H,J,I,D	0,401
7	Eigengewicht + Wind 0°, Bereich F,H,J,I,D	0,402
8	Eigengewicht + Wind 0°, Bereich F,H,J,I,D	0,403
9	Eigengewicht + Wind 180°, Bereich I,J,H,F,E	0,404
10	Eigengewicht + Wind 180°, Bereich I,J,H,F,E	0,405
11	Eigengewicht + Wind 180°, Bereich I,J,H,F,E	0,406
12	Eigengewicht + Wind 180°, Bereich I,J,H,G,E	0,407
13	Eigengewicht + Wind 180°, Bereich I,J,H,F,E	0,408
14	Eigengewicht + Wind 180°, Bereich I,J,H,G,E	0,409
15	Eigengewicht + Wind 90°, Bereich F,G,F,A	0,410
16	Eigengewicht + Wind 90°, Bereich H,B	0,411
17	Eigengewicht + Wind 90°, Bereich I,B	0,412
18	Eigengewicht + Wind 90°, Bereich I,C	0,413
19	Eigengewicht + Schnee-Volllast + Wind 0°, Bereich F,H,J,I,D	0,300,400
20	Eigengewicht + Schnee-Volllast + Wind 0°, Bereich F,H,J,I,D	0,300,401
21	<pre>Eigengewicht + Schnee-Volllast + Wind 180°, Bereich I,J,H, F,E</pre>	0,300,404

Nr.	Bezeichnung	EWG
22	<pre>Eigengewicht + Schnee-Abtauen links + Wind 0°, Bereich F,H, J,I,D</pre>	0,301,400
23	<pre>Eigengewicht + Schnee-Abtauen links + Wind 0°, Bereich F,H, J,I,D</pre>	0,301,401
24	<pre>Eigengewicht + Schnee-Abtauen links + Wind 180°, Bereich I, J,H,F,E</pre>	0,301,404
25	Eigengewicht + Schnee-Abtauen rechts + Wind 0°, Bereich F, H,J,I,D	0,302,400
26	Eigengewicht + Schnee-Abtauen rechts + Wind 0°, Bereich F, H,J,I,D	0,302,401
27	Eigengewicht + Schnee-Abtauen rechts + Wind 180°, Bereich I,J,H,F,E	0,302,404

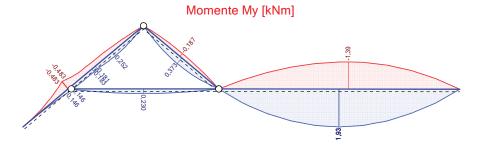
Kombinationen

KNr.	LF	BemSituation	Kombination	KLED
1	1	STR, P/T	Gsup	ständig
3	2	STR, P/T	Gsup + Q,S1	kurz
73	1	GZG, char	G	ständig
75	2	GZG, char	G + Q,S1	kurz

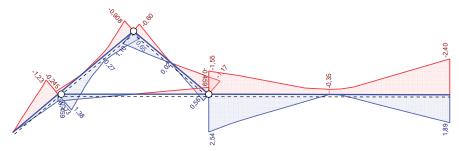
Erläuterungen

KLED : Klasse der Lasteinwirkungsdauer

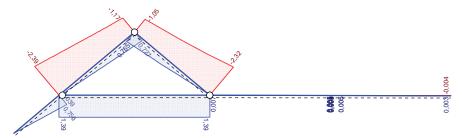
Nachweise:


GZG : Gebrauchstauglichkeit

STR : Versagen oder übermäßige Verformungen des Tragwerks


Bemessungssituationen: char : Charakteristisch

P/T : Ständig und vorübergehend


Schnittgrößen:

Querkräfte Vz [kN]

Normalkräfte Nx [kN]

Auflagerkräfte:

Stz.	x	min.AVd	max.AVd	min.AHd	max.AHd	min.Md	max.Md
Nr.	[m]	[kN/	m ——]	[kN/	m ——]	[kN	m/m ——]
1	0.600	1.043	5.277	-0.950	1.165	-	_
3	2.600	-2.028	6.442	_	_	_	_
4	5.800	-2.361	3.005	_	_	_	_

Schnittgrößen für den Sparren:

Stützmomente, Querkräfte:

Stz.	x	min.Msd	max.Msd	min.Vld	max.Vrd	max.Vld	min.Vrd
Nr.	[m]	[kN1	m/m ——]	[kN	/m ——]	[kN	/m ——]
1	0.600	-0.604	0.182	-1.542	1.721	0.466	-0.306
2	1.600	_	_	-1.135	1.375	0.811	-0.754
3	2.600	_	_	-1.456	3.173	0.694	-1.940
4	5.800	_	_	-3.005	_	2.361	_

Feldmomente:

	Länge	max.Mfd	zug.Nd	zug.x1	min.Mfd	zug.Nd	zug.x1
Ort	[m]	[kNm/m]	[kN/m]	[m]	[kNm/m]	[kN/m]	[m]
Kr.li	0.783	0.182	0.516	0.783	-0.604	0.821	0.783
Feld 1	1.305	0.315	-1.658	0.764	-0.604	-2.827	0.000
Feld 2	1.305	0.467	-1.328	0.665	-0.233	0.521	0.633
Feld 3	3.200	2.413	0.000	1.594	-1.736	0.006	1.722

 $^{\mathrm{1}}$) Das zugehörige x bezieht sich auf das lokale Koordinatensystem des Stabes

Schnittgrößen für den Kehlriegel:

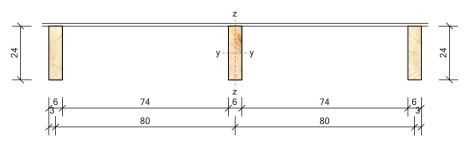
Stützmomente, Querkräfte:

Stz.	x	min.Msd	max.Msd	min.Vld	max.Vrd	max.Vld	min.Vrd
Nr.	[m]	[kN	m/m ——]	[kN/	/m ——]	[kN,	/m]
1	0.600	_	_	_	0.574	_	0.425
2	2.600	_	_	-0.574	-	-0.425	_

Feldmomente:

	Länge	max.Mfd	zug.Nd	zug.x¹	min.Mfd	zug.Nd	zug.x¹
Ort	[m]	[kNm/m]	[kN/m]	[m]	[kNm/m]	[kN/m]	[m]
Feld 1	2.000	0.287	0.930	1.000	0.000	0.930	0.000

1) Das zugehörige x bezieht sich auf das lokale Koordinatensystem des Stabes


Bemessung Sparren

Baustoff: C24 (DIN EN 338)

Kennwerte [N/mm²]: fc,0,k = 21.0fv,k = 4.0E0,mean = 11000fc,90,k = 2.5fR,k = 1.0E90,mean =370 ft,0,k = 14.0G,mean = 690E0,05 =7400 E90,05 = ft,90,k = 0.4G,05 = 460 247

Querschnitt: $1 \times b/h = 6/24 \text{ cm}$, e = 80.0 cm

Rechteck: b/h = 6/24 cm

Kennwerte: $A = 144.00 \text{ cm}^2$, $Wy = 576.00 \text{ cm}^3$, $Iy = 6912 \text{ cm}^4$ g = 0.07 kN/m, $Wz = 144.00 \text{ cm}^3$, $Iz = 432 \text{ cm}^4$

Grenzzustand der Tragfähigkeit

Parameter und Annahmen

- Querschnittsschwächungen infolge Kerven wurden berücksichtigt.
- vertikale Auflagerpressung auf nachfolgende Bauteile :
 - mit einseitiger Verlängerung der Kontaktlänge

Nachweise

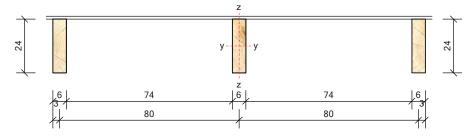
Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Feld 3	3	6.11	Biegung $3.35 / 16.62 + 0.70 \times (0.00 / 19.96)$ um die y-Achse	0.201
Stz. 4,L	3	6.13	Schub 0.75 / 2.77 aus Vz	0.271
Feld 3	3	NA.60	Biege- und Biegedrillknicken zweiachsig 0.00/(0.83x14.54) + 3.35/(0.85x16.62) + (0.00/19.96) ² Hauptrichtung: y-Achse, Ausweichen in y-Richtung	
Feld 3		NA.61	0.00/(0.10x14.54) + (3.35/(0.85x16.62)) ² 0.00/19.96 Hauptrichtung: z-Achse, Ausweichen in y-Richtung	

Nachweise

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Stz. 3	3	6.3	Querdruck 0.88 / (1.00 x 1.73)	0.508

Grenzzustand der Gebrauchstauglichkeit

Nachweis der Verformung


Ort	KNr.	Gleichung	Zwischenwerte u	und	Details	Ausnutzung
Feld 3	75		Anfangsverform	ung		
			0.19 / 1.07			0.178

Bemessung Kehlriegel 1

Baustoff: C24 (DIN EN 338)

Querschnitt: $1 \times b/h = 6/24 \text{ cm}$, e = 80.0 cm

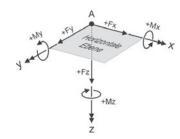
Rechteck: b/h = 6/24 cm

Kennwerte: $A = 144.00 \text{ cm}^2$, $Wy = 576.00 \text{ cm}^3$, $Iy = 6912 \text{ cm}^4$ g = 0.07 kN/m, $Wz = 144.00 \text{ cm}^3$, $Iz = 432 \text{ cm}^4$

Grenzzustand der Tragfähigkeit

Nachweise

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Feld 1	1	6.17	Biegung und Zug $0.05/6.46 + 0.40/11.08 + 0.70 \times (0.00/13 \text{ um die y-Achse}$.30) 0.044
Stz. 1,R	. 1	6.13	Schub 0.07 / 1.85 aus Vz	0.038
Feld 1	1	NA.60	Biege- und Biegedrillknicken zweiachsig $0.00/(0.95x9.69) + 0.40/(1.00x11.08) + (0.00/13.30)^2$ Hauptrichtung: y-Achse, Ausweichen in y-Richtung	0.036
Feld 1		NA.61	0.00/(0.23x9.69) + (0.40/(1.00x11.08)) ² - 0.00/13.30 Hauptrichtung: z-Achse, Ausweichen in y-Richtung	0.001


Grenzzustand der Gebrauchstauglichkeit

Nachweis der Verformung

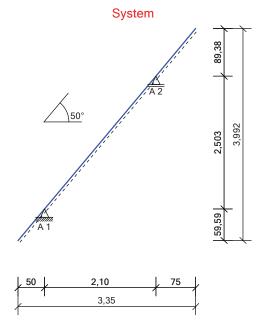
Ort	KNr.	Gleichung	Zwischenwerte und	Details	Ausnutzung
Feld 1	73		Anfangsverformung		
			0.01 / 0.67		0.013

Weiterleitung der Einwirkungen (charakt.)

Die Kraftartrichtungen sind auf das globale Koordinatensystem bezogen. Dabei ist der Betrag der Kraftart $\,$ q in [kN/m].

Lager	Kraftart	Kategorie	Maximal	Minimal	Volllast
1	dx	G	-	-	0.00
		Q,W	0.78	-0.63	0.78
		Summe,k	0.78	-0.63	0.78
	qz	G	2.72	2.72	2.72
		Q,S1	0.73	0.41	0.73
		Q,W	0.58	-1.12	-1.12
		Summe,k	4.02	2.01	2.33
3	dх	G	-	_	0.00
	qz	G	2.98	2.98	2.98
		Q,S1	1.42	0.74	1.42
		Q,W	0.33	-3.34	-3.34
		Summe,k	4.72	0.38	1.06
4	dх	G	_	_	0.00
	qz	G	1.09	1.09	1.09
		Q,S1	1.02	0.51	1.02
		Q,W	-	-2.30	-2.30
		Summe,k	2.11	-0.70	-0.19

INGENIEURBÜRO GRUMMEL ** BUCHWEIZENWEG 14 ** 49716 MEPPEN Projekt 4010 Leever Pos 1.03 Seite 26


POS.1.03 ENKELE SPOREN

Programm: 062F, Vers: 01.03.004 12/2017

Grundlagen: DIN EN 1990/NA: 2010-12

DIN EN 1991-1-1/NA: 2010-12 DIN EN 1995-1-1/NA: 2013-08

- Flächentragwerk, Trägerabstand 80.0 cm

Feldlängen in Z-Richtung

Feld		Kr.li	1	2
Länge x	[m]	0.500	2.100	0.750
Winkel	[Grad]	50.000	50.000	50.000
Höhe h	[m]	0.596	2.503	0.894
Stablänge	e s [m]	0.778	3.267	1.167
Nutzungsl	klasse	2	1	1

Auflager	des	Sparrens
----------	-----	----------

Aufla	ager des S	parrens		- Lagerun	g / Federi	n / Gelenke -
Nr.	Ort	Kerve	la	Cw,z	Cw,x	Gm
[-]	[m]	[cm]	[cm]		[kN/cm]	[kNm/cm/m]
1	0.50	4.5	5.9	fest	fest	_
2	2.60	4.5	5.9	fest	_	_
3	3.35	0.0	0.0	-	_	_

Einwirkungen

Angaben zum Bauort

Bauort: Zuidlaren Bauort: Zuidlaren Geländehöhe $\ddot{u}NN = 0$ m

Winddaten

Windansatz: eigene Vorgaben

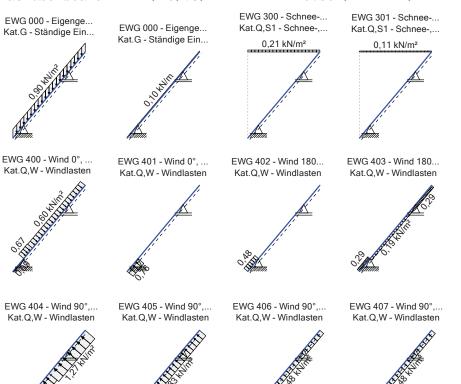
Basisgeschwindigkeit vb = 27.50 m/s, $-\text{druck qb} = 0.63 \text{ kN/m}^2$

Schneedaten

Schneelastzone 1, Schneeansatz: freie Eingabe Schneewichte Gamma = 2.00 kN/m³ Schneelast sk = 0.80 kN/m²

Parameter für Wind- und Schneelasten

Windrichtungen: Ansatz aller Richtungen


Geschlossenes Gebäude ohne Innendruck

System: Satteldach

Dachabmessungen: Breite/Länge/Höhe = 6.70 / 8.99 / 7.30 m

Firstabstand: = 3.35 m

Dachüberstand: li/re/vo/hi = 0.50 / - / - m

EWG	Einwirkungsgruppe
300	Schnee-Volllast
301	Schnee-Abtauen links
400	Wind 0°, Bereich F,H,D
401	Wind 0°, Bereich F,H,D
402	Wind 180°, Bereich I,J,E
403	Wind 180°, Bereich I,J,E
404	Wind 90°, Bereich F,G,A
405	Wind 90°, Bereich H,B
406	Wind 90°, Bereich I,B
407	Wind 90°, Bereich I,C

Erläuterungen zu den Einwirkungen

- q = Vertikale Streckenlast bezogen auf die Stablänge
- qZ = Globale Streckenlast in Z-Richtung
- qz = Lokale Streckenlast in z-Richtung
- a = horizontaler Abstand [m] vom Systemanfang
- c = horizontale Lastlänge [m]

INGENIEURBÜRO	GRUMMEL	* *	BUCHWEIZENWEG	14	* *	49716	MEPPEN
Projekt 4010	Leever			Pos	s 1.	0.3	Seite 28

Ctroal	keneinwir	kungon	[]=NT /m]	1
Streci	remernari	Kungen	1 K.M / [[[]	1

				a	C	Betra	ıg,k	Abmin.
Einwirkung aus	Typ	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Eigengewicht Sparren	q	G	0	0.00	3.35	0.10	0.10	_

Flächeneinwirkungen [kN/m²]

Einzugsbreite = 1.000 m

				a	С	Betra	ag,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Eindeckung	q	G	0	0.00	3.35	0.55	0.55	_
Ausbaulast	q	G	0	0.00	3.35	0.35	0.35	_
Schnee-Volllast	qΖ	Q,S1	300	0.00	3.35	0.21	0.21	_
Schnee-Abtauen links	qΖ	Q,S1	301	0.00	3.35	0.11	0.11	_
Wind 0°, Bereich F	qz	Q,W	400	0.00	0.90	0.67	0.67	_
Wind 0°, Bereich H	qz	Q,W	400	0.90	2.45	0.60	0.60	_
Wind 0°, Bereich D	qz	Q,W	400	0.00	0.50	-0.76	-0.76	_
	qz	Q,W	401	0.00	0.50	-0.76	-0.76	_
Wind 180°, Bereich E	qz	Q,W	402	0.00	0.50	0.48	0.48	_
Wind 180°, Bereich I	qz	Q,W	403	0.00	2.45	-0.19	-0.19	_
Wind 180°, Bereich J	qz	Q,W	403	2.45	0.90	-0.29	-0.29	_
Wind 180°, Bereich E	qz	Q,W	403	0.00	0.50	0.48	0.48	_
Wind 90°, Bereich F	qz	Q,W	404	0.00	1.68	-1.05	-1.05	_
Wind 90°, Bereich G	qz	Q,W	404	1.68	1.68	-1.27	-1.27	_
Wind 90°, Bereich A	qz	Q,W	404	0.00	0.50	1.14	1.14	_
Wind 90°, Bereich H	qz	Q,W	405	0.00	3.35	-0.83	-0.83	_
Wind 90°, Bereich B	qz	Q,W	405	0.00	0.50	0.76	0.76	_
Wind 90°, Bereich I	qz	Q,W	406	0.00	3.35	-0.48	-0.48	_
Wind 90°, Bereich B	qz	Q,W	406	0.00	0.50	0.76	0.76	_
Wind 90°, Bereich I	qz	Q,W	407	0.00	3.35	-0.48	-0.48	_
Wind 90°, Bereich C	qz	Q,W	407	0.00	0.50	0.48	0.48	_

Kategorien und Kombinationsbeiwerte

Kate-			Komb	Beiw	erte
gorie	Bezeichnung	KLED	Psi0	Psil	Psi2
G	Ständige Einwirkungen	ständig	-	-	_
Q,S1	Schnee-,Eislasten: Höhe <= NN +1000 m	kurz	0.50	0.20	_
Q,W	Windlasten	kurz	0.60	0.20	_

Lastfälle:

Nr.	Bezeichnung	EWG
1	Eigengewicht	0
2	Eigengewicht + Schnee-Volllast	0,300
3	Eigengewicht + Schnee-Abtauen links	0,301
4	Eigengewicht + Wind 0°, Bereich F,H,D	0,400
5	Eigengewicht + Wind 0°, Bereich F,H,D	0,401
6	Eigengewicht + Wind 180°, Bereich I,J,E	0,402
7	Eigengewicht + Wind 180°, Bereich I,J,E	0,403
8	Eigengewicht + Wind 90°, Bereich F,G,A	0,404
9	Eigengewicht + Wind 90°, Bereich H,B	0,405

Nr.	Bezeichnung	EWG
10	Eigengewicht + Wind 90°, Bereich I,B	0,406
11	Eigengewicht + Wind 90°, Bereich I,C	0,407
12	Eigengewicht + Schnee-Volllast + Wind 0°, Bereich F,H,D	0,300,400
13	Eigengewicht + Schnee-Abtauen links + Wind 0°, Bereich F,H,	0,301,400

Kombinationen

KNr.	LF	BemSituation	Kombination	KLED
15	8	STR, P/T	Gsup + Q,W	kurz¹
25	12	STR, P/T	Gsup + Q,W + (Q,S1)	kurz¹
41	8	GZG, char	G + Q,W	kurz¹

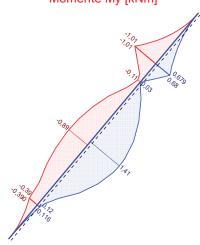
Erläuterungen

KLED : Klasse der Lasteinwirkungsdauer

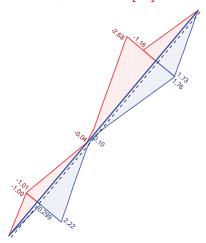
DIN EN 1995-1-1/NA:2010-12, 2.3.1.2 (2)P, Tabelle NA.1 Fußnote b Für kmod wird der Mittelwert zwischen kurz und sehr kurz verwendet.

Nachweise:

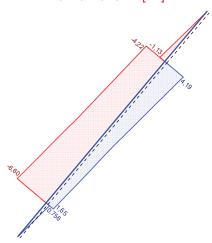
GZG : Gebrauchstauglichkeit


STR : Versagen oder übermäßige Verformungen des Tragwerks

Bemessungssituationen: char : Charakteristisch


P/T : Ständig und vorübergehend

Schnittgrößen:


Momente My [kNm]

Querkräfte Vz [kN]

Normalkräfte Nx [kN]

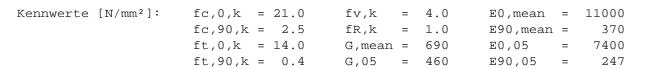
Auflagerkräfte:

Stz.	x	min.AVd	max.AVd	min.AHd	max.AHd	min.Md	max.Md
Nr.	[m]	[kN/	m ——]	[kN,	/m ——]	[kNr	n/m ——]
1	0.500	0.651	6.876	-5.928	3.026	-	_
2	2.600	-5.685	8.572	_	_	_	_

Schnittgrößen für den Sparren:

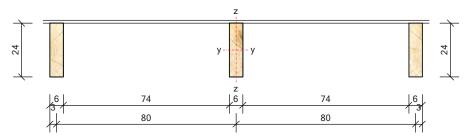
Stützmomente, Querkräfte:

Stz.	X	min.Msd n	nax.Msd	min.Vld	max.Vrd	max.Vld	min.Vrd
Nr.	[m]	[kNm/	/m ——]	[kN,	/m ——]	[kN	/m —]
1	0.500	-0.487	0.146	-1.252	2.778	0.374	-1.268
2	2.600	-1.262	0.848	-3.346	2.164	2.200	-1.454


${\tt Feldmomente:}$

	Länge	max.Mfd	zug.Nd	zug.x¹	min.Mfd	zug.Nd	zug.x¹
Ort	[m]	[kNm/m]	[kN/m]	[m]	[kNm/m]	[kN/m]	[m]
Kr.li	0.778	0.146	0.611	0.778	-0.487	0.825	0.778
Feld 1	3.267	1.756	3.187	1.463	-1.262	5.239	3.267
Feld 2	1.167	0.848	-0.916	0.000	-1.262	-1.327	0.000

 $^{\mathrm{1}}$) Das zugehörige x bezieht sich auf das lokale Koordinatensystem des Stabes


Bemessung Sparren

Baustoff: C24 (DIN EN 338)

Querschnitt: $1 \times b/h = 6/24 \text{ cm}$, e = 80.0 cm

Rechteck: b/h = 6/24 cm

Kennwerte: $A = 144.00 \text{ cm}^2$, $Wy = 576.00 \text{ cm}^3$, $Iy = 6912 \text{ cm}^4$ g = 0.07 kN/m, $Wz = 144.00 \text{ cm}^3$, $Iz = 432 \text{ cm}^4$

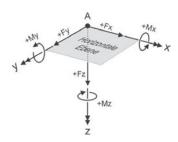
Grenzzustand der Tragfähigkeit

Parameter und Annahmen

- Querschnittsschwächungen infolge Kerven wurden berücksichtigt.
- vertikale Auflagerpressung auf nachfolgende Bauteile :
 - mit einseitiger Verlängerung der Kontaktlänge

Nachweise

Ort		KNr.	Gleichung	Zwischenwerte und Details A	usnutzung
Stz.	2	25	6.17	Biegung und Zug $0.36/10.77 + 2.66/18.46 + 0.70 \times (0.00/22.$ um die y-Achse	17) 0.177
Stz.	2,L	25	6.13	Schub 0.69 / 3.08 aus Vz	0.223
Feld	1	15	6.23	Biegeknicken 0.44/(0.83x16.15) + 0.80/18.46 + 0.70x(0.00/22.17) um die y-Achse	0.076
Feld	1		6.24	$0.44/(0.09 \times 16.15) + 0.70 \times (0.80/18.46) + 0.00/22.17$ um die z-Achse	0.326
Stz.	2	25	6.3	Querdruck 1.30 / (1.00 x 1.92)	0.674


Grenzzustand der Gebrauchstauglichkeit

Nachweis der Verformung

Ort	KNr.	Gleichung	Zwischenwerte	und I	Details	Ausnutzung
Kr.li	41		Anfangsverform	ung		
			0.06 / 0.52			0.121

Weiterleitung der Einwirkungen (charakt.)

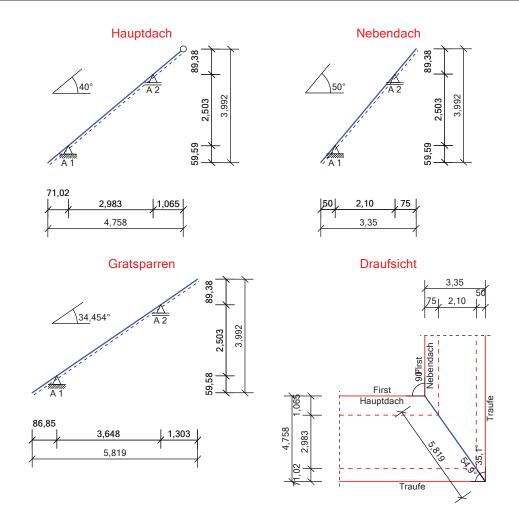
Die Kraftartrichtungen sind auf das globale Koordinatensystem bezogen. Dabei ist der Betrag der Kraftart q in [kN/m].

Lager	Kraftart	Kategorie	Maximal	Minimal	Volllast
1	dx	G	_	_	0.00
		Q,W	2.02	-3.95	-3.95
		Summe,k	2.02	-3.95	-3.95
	qz	G	2.35	2.35	2.35
		Q,S1	0.31	0.16	0.31
		Q,W	2.47	-1.13	2.47
		Summe,k	5.13	1.38	5.13
2	dх	G	_	-	0.00
	qz	G	2.99	2.99	2.99
		Q,S1	0.39	0.21	0.39
		Q,W	2.83	-5.78	-5.78
		Summe,k	6.21	-2.59	-2.40

POS.1.04 HOEKKEPER

Programm: 062J, Vers: 01.03.004 12/2017

Grundlagen: DIN EN 1990/NA: 2010-12


DIN EN 1991-1-1/NA: 2010-12 DIN EN 1995-1-1/NA: 2013-08

System

Hauptdach: Pos. 1.01 Nebendach: Pos. 1.03

Dachneigung: Alpha = 40.00° Dachneigung: Beta = 50.00° Winkel Traufe/Gratspar. = 54.85° Winkel Traufe/Gratspar. = 35.15°

Feld	Länge	h	g,k(Dfl)	Feld	Länge	h	g,k(Dfl)
Nr.	[m]	[m]	$[kN/m^2]$	Nr.	[m]	[m]	$[kN/m^2]$
Kr.li.	0.710	0.596	0.93	Kr.li.	0.500	0.596	1.03
1	2.983	2.503	1.03	1	2.100	2.503	1.03
2	1.065	0.894	1.03	2	0.750	0.894	1.03

Feldlängen in Z-Richtung

Feld		Kr.li	1	2
Länge x	[m]	0.868	3.648	1.303
Winkel	[Grad]	34.454	34.454	34.454
Höhe h	[m]	0.596	2.503	0.894
Stablänge	e s [m]	1.053	4.424	1.580
Nutzungsl	klasse	2	1	1

Auflager de	s Sparrens
-------------	------------

AUIIa	ager des Sp	parrens	- Lageru	- Lagerung / Federn /			
Nr.	Ort	Kerve	la	Cw,z	Cw,x	Gm	
[-]	[m]	[cm]	[cm]		[kN/cm]	[kNm/cm/m]	
1	0.87	10.5	18.6	fest	fest	_	
2	4.52	10.5	18.6	fest	-	-	
3	5.82	0.0	0.0	_	_	_	

Einwirkungen

Angaben zum Bauort

Bauort: Zuidlaren Bauort: Zuidlaren Geländehöhe $\ddot{u}NN = 0$ m

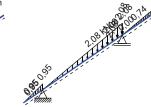
Winddaten

Windansatz: eigene Vorgaben

Basisgeschwindigkeit vb = 27.50 m/s, $-\text{druck qb} = 0.63 \text{ kN/m}^2$

Schneedaten

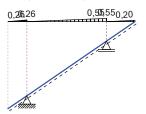
Schneelastzone 1, Schneeansatz: freie Eingabe Schneewichte Gamma = $2.00~\mathrm{kN/m^3}$

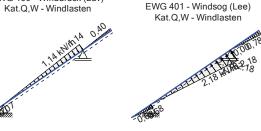

Schneelast $sk = 0.80 \text{ kN/m}^2$

Wind- u. Schnee Parameter

Gebäudehöhe = 7.30 m

		Hauptdach	Nebendach
Dachform für Windansatz	[-]	Walmdach	Walmdach
Gebäudebreite	[m]	9.52	6.70
Außendruck, cpe max./min.	[-]	0.70 /-1.33	0.70 /-1.33
Unterwind, cpe max./min.	[-]	0.77 /-0.44	0.80 /-0.50
Schneeformbeiwert µ	[-]	0.53	0.27
Schneelast auf dem Dach sk * μ	$[kN/m^2]$	0.43	0.21


EWG 000 - Eigengewicht Kat.G - Ständige Einwirkungen


EWG 100 - Ständige Lasten a...

Kat.G - Ständige Einwirkungen

EWG 300 - Schnee Kat.Q,S1 - Schnee-,Eislasten: ...

EWG 400 - Winddruck (Luv) Kat.Q,W - Windlasten

EWG Einwirkungsgruppe

- 100 Ständige Lasten aus Dachflächen
- 300 Schnee
- 400 Winddruck (Luv)
- 401 Windsog (Lee)

Erläuterungen zu den Einwirkungen

- HD = Einwirkungen aus dem Hauptdach
- ND = Einwirkungen aus dem Nebendach
- q = Vertikale Streckenlast bezogen auf die Stablänge
- qZ = Globale Streckenlast in Z-Richtung
- qz = Lokale Streckenlast in z-Richtung
- a = horizontaler Abstand [m] vom Systemanfang
- c = horizontale Lastlänge [m]

Streckeneinwirkungen [kN/m]

				a	С	Betra	g,k	Abmin.
Einwirkung aus	Typ	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Eigengewicht Sparren	q	G	0	0.00	5.82	0.10	0.10	_
HD: Ständige Lasten	q	G	100	0.00	0.87	-	0.41	-
	q	G	100	0.87	3.65	_	0.95	_
	q	G	100	4.52	1.30	_	0.34	_
ND: Ständige Lasten	q	G	100	0.00	0.87	_	0.54	_
	q	G	100	0.87	3.65	-	1.13	_

				a	С	Betr	ag,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
	q	G	100	4.52	1.30	_	0.40	-
HD: Schnee	qΖ	Q,S1	300	0.00	0.87	_	0.17	_
	qΖ	Q,S1	300	0.87	3.65	-	0.37	-
	qΖ	Q,S1	300	4.52	1.30	_	0.13	_
ND: Schnee	qΖ	Q,S1	300	0.00	0.87	_	0.09	_
	qΖ	Q,S1	300	0.87	3.65	_	0.18	_
	qΖ	Q,S1	300	4.52	1.30	_	0.07	_
HD: Winddruck (Luv)	qz	Q,W	400	0.00	0.87	_	0.27	_
HD: Unterwind (Luv)	qz	Q,W	400	0.00	0.87	_	-0.30	_
HD: Winddruck (Luv)	qz	Q,W	400	0.87	3.65	_	0.57	_
	qz	Q,W	400	4.52	1.30	_	0.20	_
ND: Winddruck (Luv)	qz	Q,W	400	0.00	0.87	_	0.27	_
ND: Unterwind (Luv)	qz	Q,W	400	0.00	0.87	_	-0.31	_
ND: Winddruck (Luv)	qz	Q,W	400	0.87	3.65	_	0.57	_
	qz	Q,W	400	4.52	1.30	_	0.20	_
HD: Windsog (Lee)	qz	Q,W	401	0.00	0.87	_	-0.52	_
HD: Unterwind (Lee)	qz	Q,W	401	0.00	0.87	_	0.17	_
HD: Windsog (Lee)	qz	Q,W	401	0.87	3.65	_	-1.09	_
	qz	Q,W	401	4.52	1.30	_	-0.39	_
ND: Windsog (Lee)	qz	Q,W	401	0.00	0.87	_	-0.52	_
ND: Unterwind (Lee)	qz	Q,W	401	0.00	0.87	_	0.19	_
ND: Windsog (Lee)	qz	Q,W	401	0.87	3.65	-	-1.09	-
	qz	Q,W	401	4.52	1.30	_	-0.39	_

Kategorien und Kombinationsbeiwerte

Kate-			Komb	Beiw	erte
gorie	Bezeichnung	KLED	Psi0	Psi1	Psi2
G	Ständige Einwirkungen	ständig	-	-	_
Q,S1	Schnee-,Eislasten: Höhe <= NN +1000 m	kurz	0.50	0.20	_
Q,W	Windlasten	kurz	0.60	0.20	_

Lastfälle:

Nr.	Bezeichnung	EWG
1	Eigengewicht + Ständige Lasten aus Dachflächen	0,100
2	Eigengewicht + Ständige Lasten aus Dachflächen + Schnee	0,100,300
3	Eigengewicht + Ständige Lasten aus Dachflächen + Winddruck (Luv)	0,100,400
4	Eigengewicht + Ständige Lasten aus Dachflächen + Windsog (Lee)	0,100,401
5	Eigengewicht + Ständige Lasten aus Dachflächen + Schnee + Winddruck (Luv)	0,100,300,400
6	Eigengewicht + Ständige Lasten aus Dachflächen + Schnee	0,100,300,401

Kombinationen

+ Windsog (Lee)

KNr.	LF	BemSituation	Kombination	KLED
11	5	STR, P/T	Gsup + Q,W + (Q,S1)	kurz¹
25	5	GZG, char	G + Q,W + (Q,S1)	kurz¹

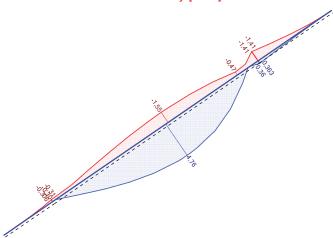
Erläuterungen

KLED : Klasse der Lasteinwirkungsdauer

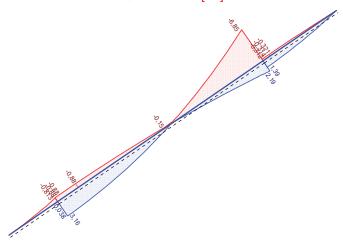
DIN EN 1995-1-1/NA:2010-12, 2.3.1.2 (2)P, Tabelle NA.1 Fußnote b Für kmod wird der Mittelwert zwischen kurz und sehr kurz verwendet.

Nachweise:

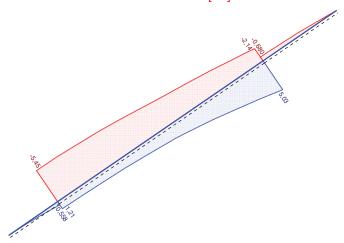
GZG : Gebrauchstauglichkeit


STR : Versagen oder übermäßige Verformungen des Tragwerks

Bemessungssituationen: char : Charakteristisch


P/T : Ständig und vorübergehend

Schnittgrößen:


Momente My [kNm]

Querkräfte Vz [kN]

Normalkräfte Nx [kN]

Auflagerkräfte:

Stz.	x	min.AVd	max.AVd	min.AHd	max.AHd	min.Md	$\max.Md$
Nr.	[m]	[kN]	[kl	N]	[ki	Nm ———]
1	0.868	1.933	3.678	-4.919	2.377	_	_
2	4.516	-3.039	9.991	_	_	_	_

Schnittgrößen für den Sparren:

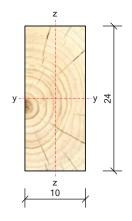
Stützmomente, Querkräfte:

Stz.	X	min.Msd	max.Msd	min.Vld	max.Vrd	max.Vld	min.Vrd
Nr.	[m]	[kN	m ——]	[ki	1]	[k]	N ———]
1	0.868	-0.306	-0.002	-0.813	3.161	0.038	-0.881
2	4.516	-1.408	0.363	-6.853	1.385	2.192	-0.314

Feldmomente:

	Länge	max.Mfd	zug.Nd	zug.x1	min.Mfd	zug.Nd	zug.x ¹
Ort	[m]	[kNm]	[kN]	[m]	[kNm]	[kN]	[m]
Kr.li	1.053	0.000	0.000	0.000	-0.306	0.558	1.053
Feld 1	4.424	4.763	2.133	2.437	-1.548	-4.030	2.487
Feld 2	1.580	0.363	-0.421	0.000	-1.408	-0.624	0.000

 $^{\scriptscriptstyle 1}$) Das zugehörige x bezieht sich auf das lokale Koordinatensystem des Stabes


Bemessung Sparren

Baustoff: C24 (DIN EN 338)

Kennwerte [N/mm²]:	fc,0,k = 21.0	fv,k =	4.0	E0,mean	=	11000
	fc,90,k = 2.5	fR,k =	1.0	E90,mean	=	370
	ft,0,k = 14.0	G,mean =	690	E0,05	=	7400
	ft,90,k = 0.4	G,05 =	460	E90,05	=	247

Querschnitt: $1 \times b/h = 10/24 \text{ cm}$

Rechteck: b/h = 10/24 cm

Kennwerte: $A = 240.00 \text{ cm}^2$, $Wy = 960.00 \text{ cm}^3$, $Iy = 11520 \text{ cm}^4$ g = 0.12 kN/m, $Wz = 400.00 \text{ cm}^3$, $Iz = 2000 \text{ cm}^4$

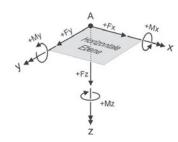
Grenzzustand der Tragfähigkeit

Parameter und Annahmen

- Querschnittsschwächungen infolge Kerven wurden berücksichtigt.
- vertikale Auflagerpressung auf nachfolgende Bauteile :
 - mit beidseitiger Verlängerung der Kontaktlänge
- Kippen und Knicken in Scheibenebene :
 - Sparren/Kehlriegel gelten als ausreichend gesichert.

Nachweise

Ort		KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Stz.	2	11	6.17	Biegung und Zug $0.37/11.00 + 4.64/18.85 + 0.70 \times (0.00/20)$ um die y-Achse	.02) 0.280
Stz.	2,L	11	6.13	Schub 1.52 / 3.08 aus Vz	0.495
Feld	1	11	6.23	Biegeknicken 0.00/(0.63x16.15) + 4.96/18.46 + 0.70x(0.00/20.02) um die y-Achse	0.269
Stz.	2	11	6.3	Querdruck 0.34 / (1.00 x 1.92)	0.175


Grenzzustand der Gebrauchstauglichkeit

Nachweis der Verformung

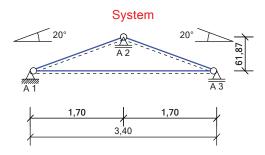
Ort	KNr.	Gleichung	Zwischenwerte und	Details	Ausnutzung
Feld 1	25		Anfangsverformung		
			0.52 / 1.47		0.350

Weiterleitung der Einwirkungen (charakt.)

Die Kraftartrichtungen sind auf das globale Koordinatensystem bezogen. Dabei ist der Betrag der Kraftart F in [kN].

Lager	Kraftart	Kategorie	Maximal	Minimal	Volllast
1	FX	G	_	-	0.00
		Q,W	1.58	-3.28	-3.28
		Summe,k	1.58	-3.28	-3.28
	FZ	G	2.24	2.24	2.24
		Q,S1	0.43	0.43	0.43
		Q,W	0.01	-0.21	-0.21
		Summe,k	2.68	2.46	2.46
2	FX	G	_	-	0.00
	FZ	G	4.15	4.15	4.15
		Q,S1	0.82	0.82	0.82
		Q,W	2.52	-4.79	-4.79
		Summe,k	7.49	0.18	0.18

POS.1.05 SPORENKAP


Programm: 062F, Vers: 01.03.004 12/2017

Grundlagen: DIN EN 1990/NA: 2010-12

DIN EN 1991-1-1/NA: 2010-12 DIN EN 1995-1-1/NA: 2013-08

System

- Flächentragwerk, Trägerabstand 80.0 cm

Feldlängen in Z-Richtung

Feld		1	2
Länge x	[m]	1.700	1.700
Winkel	[Grad]	20.000	-20.000
Höhe h	[m]	0.619	-0.619
Stablänge	es[m]	1.809	1.809
Nutzungs	klasse	1	1

Aufla	ager des	Sparrens		- Lageru	ing / Federn	/ Gelenke -
Nr.	Ort	Kerve	la	Cw,z	Cw,x	Gm
[-]	[m]	[cm]	[cm]		[kN/cm]	[kNm/cm/m]
1	0.00	3.0	8.8	fest	fest	_
2	1.70	0.0	0.0	fest	-	Gelenk
3	3.40	0.0	0.0	fest	-	_
Kehlr	riegel					
		Höhe ab				Nutzungs-
Nr.		Traufpunkt		Länge		klasse
[-]		[m]		[m]		[-]
1		0.00		3.40		1

Einwirkungen

Angaben zum Bauort

Bauort: Zuidlaren Bauort: Zuidlaren Geländehöhe üNN = 0 m

Winddaten

Windansatz: eigene Vorgaben

Basisgeschwindigkeit vb = 27.50 m/s, $-\text{druck qb} = 0.63 \text{ kN/m}^2$

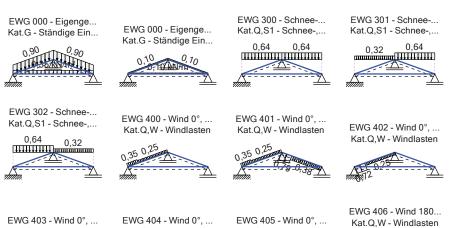
Schneedaten

Schneelastzone 1, Schneeansatz: freie Eingabe

Schneewichte Gamma = 2.00 kN/m^3 Schneelast sk = 0.80 kN/m^2

Parameter für Wind- und Schneelasten

Windrichtungen: Ansatz aller Richtungen


Geschlossenes Gebäude ohne Innendruck

System: Satteldach

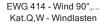
Dachabmessungen: Breite/Länge/Höhe = 3.40 / 4.30 / 6.70 m

Firstabstand: = 1.70 m

Dachüberstand: li/re/vo/hi = - / - / - m

EWG 407 - Wind 180... Kat.Q,W - Windlasten

EWG 408 - Wind 180... Kat.Q,W - Windlasten EWG 409 - Wind 180... Kat.Q,W - Windlasten EWG 410 - Wind 180... Kat.Q,W - Windlasten



EWG 411 - Wind 180... Kat.Q,W - Windlasten

EWG 412 - Wind 90°,... Kat.Q,W - Windlasten

EWG 413 - Wind 90°,... Kat.Q,W - Windlasten

EWG	Einwirkungsgruppe
300	Schnee-Volllast
301	Schnee-Abtauen links
302	Schnee-Abtauen rechts
400	Wind 0°, Bereich F,H,J,I
401	Wind 0°, Bereich F,H,J,I
402	Wind 0°, Bereich F,H,J,I
403	Wind 0°, Bereich G,H,J,I
404	Wind 0°, Bereich F,H,J,I
405	Wind 0°, Bereich G,H,J,I
406	Wind 180°, Bereich I,J,H,F
407	Wind 180°, Bereich I,J,H,F
408	Wind 180°, Bereich I,J,H,F
409	Wind 180°, Bereich I,J,H,G
410	Wind 180°, Bereich I,J,H,F
411	Wind 180°, Bereich I,J,H,G
412	Wind 90°, Bereich F,G,F
413	Wind 90°, Bereich H
414	Wind 90°, Bereich I

Erläuterungen zu den Einwirkungen

- q = Vertikale Streckenlast bezogen auf die Stablänge
- qZ = Globale Streckenlast in Z-Richtung
- qz = Lokale Streckenlast in z-Richtung
- a = horizontaler Abstand [m] vom Systemanfang
- c = horizontale Lastlänge [m]

Einwirkungen auf den Sparren

Streckeneinwirkungen [kN/m]

				а	С	Betra	ıg,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Eigengewicht Sparren	q	G	0	0.00	3.40	0.10	0.10	_

Flächeneinwirkungen [kN/m²]

Einzugsbreite = 1.000 m

				а	С	Betra	g,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Eindeckung	q	G	0	0.00	3.40	0.55	0.55	_
Ausbaulast	q	G	0	0.00	3.40	0.35	0.35	_
Schnee-Volllast	qΖ	Q,S1	300	0.00	1.70	0.64	0.64	_
	qΖ	Q,S1	300	1.70	1.70	0.64	0.64	-
Schnee-Abtauen links	qΖ	Q,S1	301	0.00	1.70	0.32	0.32	-
	qΖ	Q,S1	301	1.70	1.70	0.64	0.64	_
Schnee-Abtauen rechts	qΖ	Q,S1	302	0.00	1.70	0.64	0.64	-
	qΖ	Q,S1	302	1.70	1.70	0.32	0.32	-
Wind 0°, Bereich F	qz	Q,W	400	0.00	0.43	0.35	0.35	-
Wind 0°, Bereich H	qz	Q,W	400	0.43	1.27	0.25	0.25	-
Wind 0°, Bereich F	qz	Q,W	401	0.00	0.43	0.35	0.35	-

				а	С	Betra	g,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Wind 0°, Bereich H	qz	Q,W	401	0.43	1.27	0.25	0.25	-
Wind 0°, Bereich J	qz	Q,W	401	1.70	0.43	-0.79	-0.79	_
Wind 0°, Bereich I	qz	Q,W	401	2.13	1.27	-0.38	-0.38	_
Wind 0°, Bereich F	qz	Q,W	402	0.00	0.43	-0.72	-0.72	_
Wind 0°, Bereich H	qz	Q,W	402	0.43	1.27	-0.25	-0.25	_
Wind 0°, Bereich G	qz	Q,W	403	0.00	0.43	-0.66	-0.66	_
Wind 0°, Bereich H	qz	Q,W	403	0.43	1.27	-0.25	-0.25	_
Wind 0°, Bereich F	qz	Q,W	404	0.00	0.43	-0.72	-0.72	_
Wind 0°, Bereich H	qz	Q,W	404	0.43	1.27	-0.25	-0.25	_
Wind 0°, Bereich J	qz	Q,W	404	1.70	0.43	-0.79	-0.79	_
Wind 0°, Bereich I	qz	Q,W	404	2.13	1.27	-0.38	-0.38	_
Wind 0°, Bereich G	qz	Q,W	405	0.00	0.43	-0.66	-0.66	_
Wind 0°, Bereich H	qz	Q,W	405	0.43	1.27	-0.25	-0.25	_
Wind 0°, Bereich J	qz	Q,W	405	1.70	0.43	-0.79	-0.79	_
Wind 0°, Bereich I	qz	Q,W	405	2.13	1.27	-0.38	-0.38	_
Wind 180°, Bereich H	qz	Q,W	406	1.70	1.27	0.25	0.25	_
Wind 180°, Bereich F	qz	Q,W	406	2.97	0.43	0.35	0.35	_
Wind 180°, Bereich I	qz	Q,W	407	0.00	1.27	-0.38	-0.38	_
Wind 180°, Bereich J	qz	Q,W	407	1.27	0.43	-0.79	-0.79	_
Wind 180°, Bereich H	qz	Q,W	407	1.70	1.27	0.25	0.25	_
Wind 180°, Bereich F	qz	Q,W	407	2.97	0.43	0.35	0.35	_
Wind 180°, Bereich H	qz	Q,W	408	1.70	1.27	-0.25	-0.25	_
Wind 180°, Bereich F	qz	Q,W	408	2.97	0.43	-0.72	-0.72	_
Wind 180°, Bereich H	qz	Q,W	409	1.70	1.27	-0.25	-0.25	_
Wind 180°, Bereich G	qz	Q,W	409	2.97	0.43	-0.66	-0.66	_
Wind 180°, Bereich I	qz	Q,W	410	0.00	1.27	-0.38	-0.38	_
Wind 180°, Bereich J	qz	Q,W	410	1.27	0.43	-0.79	-0.79	_
Wind 180°, Bereich H	qz	Q,W	410	1.70	1.27	-0.25	-0.25	_
Wind 180°, Bereich F	qz	Q,W	410	2.97	0.43	-0.72	-0.72	_
Wind 180°, Bereich I	qz	Q,W	411	0.00	1.27	-0.38	-0.38	_
Wind 180°, Bereich J	qz	Q,W	411	1.27	0.43	-0.79	-0.79	_
Wind 180°, Bereich H	qz	Q,W	411	1.70	1.27	-0.25	-0.25	_
Wind 180°, Bereich G	qz	Q,W	411	2.97	0.43	-0.66	-0.66	_
Wind 90°, Bereich F	qz	Q,W	412	0.00	0.85	-1.17	-1.17	_
Wind 90°, Bereich G	qz	Q,W	412	0.85	0.85	-1.26	-1.26	_
	qz	Q,W	412	1.70	0.85	-1.26	-1.26	_
Wind 90°, Bereich F	qz	Q,W	412	2.55	0.85	-1.17	-1.17	_
Wind 90°, Bereich H	qz	Q,W	413	0.00	1.70	-0.63	-0.63	_
	qz	Q,W	413	1.70	1.70	-0.63	-0.63	_
Wind 90°, Bereich I	qz	Q,W	414	0.00	1.70	-0.47	-0.47	-
	qz	Q,W	414	1.70	1.70	-0.47	-0.47	_

Einwirkungen auf den Kehlriegel 1

 ${\tt Streckeneinwirkungen~[kN/m]}$

Einwirkung aus	Тур	Kat.	EWG	a [m]	C [m]	Betra li.	g,k re.	Abmin. Alpha
Eigengewicht Kehlriegel	q	G	0	0.00	3.40	0.10	0.10	_
Flächeneinwirkungen [kN/m²]					Einzu	ıgsbrei	te =	1.000 m
				а	С	Betra	g,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Ausbau	q	G	0	0.00	3.40	0.35	0.35	_

Komb.-Beiwerte

Kategorien und Kombinationsbeiwerte

Kate-

rate-			KOIIIDA	Beiwe	erte
gorie		KLED	Psi0	Psi1	Psi2
G c G1	Ständige Einwirkungen	ständig	-	-	_
Q,S1	Schnee-,Eislasten: Höhe <= NN +1000 m Windlasten	kurz kurz	0.50 0.60	0.20	-
Q,W	WINGTASCEN	KULZ	0.00	0.20	_
Lastf	älle:				
	Bezeichnung			EWG	
1	Eigengewicht			0	
2	Eigengewicht + Schnee-Volllast			0,300)
3	Eigengewicht + Schnee-Abtauen links			0,301	_
4	Eigengewicht + Schnee-Abtauen rechts			0,302)
4	Eigengewicht + Schliee-Abtauen lechts			0,302	2
5	Eigengewicht + Wind 0°, Bereich F,H,J,I			0,400)
6	Eigengewicht + Wind 0°, Bereich F,H,J,I			0,401	_
7	Eigengewicht + Wind 0°, Bereich F,H,J,I			0,402)
/	Eigengewicht + Wind 0-, Bereich F,H,U,I			0,402	4
8	Eigengewicht + Wind 0°, Bereich G,H,J,I			0,403	3
9	Eigengewicht + Wind 0°, Bereich F,H,J,I			0,404	ŀ
10	Eigengewicht + Wind 0°, Bereich G,H,J,I			0,405	5
10	Eigengewiene wind v , Bereien G,n,o,i			0,100	,
11	Eigengewicht + Wind 180°, Bereich I,J,H,F			0,406	5
12	Eigengewicht + Wind 180°, Bereich I,J,H,F			0,407	7
13	Eigengewicht + Wind 180°, Bereich I,J,H,F			0,408	3
	J. J			,	
14	Eigengewicht + Wind 180°, Bereich I,J,H,G			0,409)
1.5				0 410	
15	Eigengewicht + Wind 180°, Bereich I,J,H,F			0,410)
16	Eigengewicht + Wind 180°, Bereich I,J,H,G			0,411	L
				•	
17	Eigengewicht + Wind 90°, Bereich F,G,F			0,412	2
1.0	Time we into the wind one persiah H			0 412	,
18	Eigengewicht + Wind 90°, Bereich H			0,413	3
19	Eigengewicht + Wind 90°, Bereich I			0,414	<u>l</u>
20	Eigengewicht + Schnee-Volllast + Wind 0°, I	Bereich F,H	,J,I	0,300	,400
21	Eigengewicht + Schnee-Volllast + Wind 0°, F	Porojah E II	т т	0,300	101
21	Eigengewicht + Schliee-Volllast + Wind V , i	sereich F,n	,∪,⊥	0,300	,401
22	Eigengewicht + Schnee-Volllast + Wind 180°	, Bereich I	,J,H,F	0,300	,406
23	Eigengewicht + Schnee-Abtauen links + Wind	0°, Bereic	h F,H,	0,301	.,400
	J,I				
24	Eigengewicht + Schnee-Abtauen links + Wind	0°, Bereic	h F,H,	0,301	,401
	J,I				

Nr.	Bezeichnung	EWG
25	Eigengewicht + Schnee-Abtauen links + Wind 180°, Bereich I, J,H,F	0,301,406
26	<pre>Eigengewicht + Schnee-Abtauen rechts + Wind 0°, Bereich F, H,J,I</pre>	0,302,400
27	<pre>Eigengewicht + Schnee-Abtauen rechts + Wind 0°, Bereich F, H,J,I</pre>	0,302,401
28	Eigengewicht + Schnee-Abtauen rechts + Wind 180°, Bereich I,J,H,F	0,302,406

Kombinationen

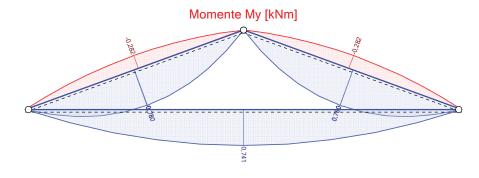
KNr.	LF	BemSituation	Kombination	KLED
1	1	STR, P/T	Gsup	ständig
3	2	STR, P/T	Gsup + Q,S1	kurz
39	20	STR, P/T	Gsup + Q ,S1 + (Q,W)	kurz¹
43	21	STR, P/T	Gsup + Q ,S1 + (Q,W)	kurz¹
75	1	GZG, char	G	ständig
97	20	GZG, char	G + Q,S1 + (Q,W)	kurz¹

Erläuterungen

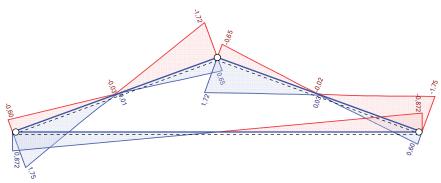
KLED : Klasse der Lasteinwirkungsdauer

DIN EN 1995-1-1/NA:2010-12, 2.3.1.2 (2)P, Tabelle NA.1 Fußnote b Für kmod wird der Mittelwert zwischen kurz und sehr kurz verwendet.

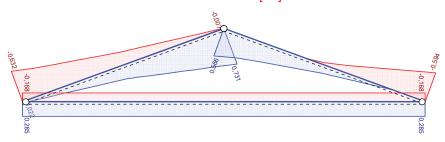
Nachweise:


GZG : Gebrauchstauglichkeit

STR : Versagen oder übermäßige Verformungen des Tragwerks


Bemessungssituationen: char : Charakteristisch

P/T : Ständig und vorübergehend


Schnittgrößen:

Querkräfte Vz [kN]

Normalkräfte Nx [kN]

Auflagerkräfte:

Stz.	x	min.AVd	max.AVd	min.AHd	max.AHd	min.Md	max.Md
Nr.	[m]	[kN/	m ——]	[kN/	m ——]	[kN	m/m —_]
1	0.000	0.142	3.365	-0.704	0.704	-	_
2	1.700	-1.158	4.341	_	_	_	_
3	3,400	0.142	3.385	_	_	_	_

Schnittgrößen für den Sparren:

Stützmomente, Querkräfte:

Stz.	x	min.Msd	max.Msd	min.Vld	max.Vrd	max.Vld	min.Vrd
Nr.	[m]	[kNn	n/m ——]	[kN	/m ——]	[kN	/m ——]
1	0.000	-	-	-	2.182	-	-0.747
2	1.700	_	-	-2.152	2.152	0.808	-0.808
3	3.297	-	-	-2.182	_	0.747	_

Feldmomente:

	Länge	max.Mfd	zug.Nd	zug.x¹	min.Mfd	zug.Nd	zug.x1
Ort	[m]	[kNm/m]	[kN/m]	[m]	[kNm/m]	[kN/m]	[m]
Feld 1	1.809	0.976	0.050	0.902	-0.352	0.221	0.937
Feld 2	1.809	0.976	-0.008	0.907	-0.352	0.221	0.872

1) Das zugehörige x bezieht sich auf das lokale Koordinatensystem des Stabes

Schnittgrößen für den Kehlriegel:

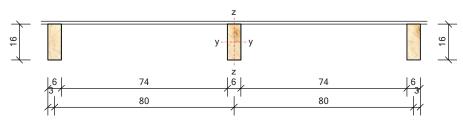
Stützmomente, Querkräfte:

Stz.	X	min.Msd max.Msd	min.Vld max.Vrd	max.Vld min.Vrd
Nr.	[m]	[kNm/m]	[kN/m]	[kN/m]
1	0.000		- 1.090	- 0.808
2	3.400		-1.090 -	-0.808 -

Feldmomente:

	Länge	max.Mfd	zug.Nd	zug.x ¹	min.Mfd	zug.Nd	zug.x1
Ort	[m]	[kNm/m]	[kN/m]	[m]	[kNm/m]	[kN/m]	[m]
Feld 1	3.400	0.927	0.000	1.700	0.000	0.000	0.000

1) Das zugehörige x bezieht sich auf das lokale Koordinatensystem des Stabes


Bemessung Sparren

Baustoff: C24 (DIN EN 338)

Kennwerte [N/mm²]: fc,0,k = 21.0 fv,k = 4.0 E0,mean = 11000 fc,90,k = 2.5 fR,k = 1.0 E90,mean = 370 ft,0,k = 14.0 G,mean = 690 E0,05 = 7400 ft,90,k = 0.4 G,05 = 460 E90,05 = 247

Querschnitt: $1 \times b/h = 6/16 \text{ cm}, e = 80.0 \text{ cm}$

Rechteck: b/h = 6/16 cm

 $Wy = 256.00 \text{ cm}^3$,

 $Wz = 96.00 \text{ cm}^3$,

2048 cm⁴

 288 cm^4

Iy =

Iz =

g = 0.05 kN/m,

A =

Grenzzustand der Tragfähigkeit

Parameter und Annahmen

- Querschnittsschwächungen infolge Kerven wurden berücksichtigt.
- vertikale Auflagerpressung auf nachfolgende Bauteile :
 - mit einseitiger Verlängerung der Kontaktlänge

 96.00 cm^2 ,

Nachweise

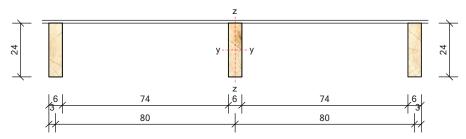
Kennwerte:

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Feld 1	43	6.17	Biegung und Zug $0.02/10.77 + 3.05/18.46 + 0.70 \times (0.00/22)$ um die y-Achse	2.17) 0.167
Stz. 1,R	39	6.13	Schub 0.67 / 3.08 aus Vz	0.218
Feld 1	3	NA.60	Biege- und Biegedrillknicken zweiachsig 0.00/(0.89x14.54) + 2.75/(1.00x16.62) + (0.00/19.96) ² Hauptrichtung: y-Achse, Ausweichen in y-Richtung	0.165
Feld 1		NA.61	0.00/(0.28x14.54) + (2.75/(1.00x16.62)) ² 0.00/19.96 Hauptrichtung: z-Achse, Ausweichen in y-Richtung	+ 0.027
Stz. 1	1	6.3	Querdruck 0.24 / (1.00 x 1.15)	0.206

Grenzzustand der Gebrauchstauglichkeit

Nachweis der Verformung

Ort	KNr.	Gleichung	Zwischenwerte und	Details	Ausnutzung
Feld 1	97		Anfangsverformung		
			0.08 / 0.60		0.138


Bemessung Kehlriegel 1

Baustoff: C24 (DIN EN 338)

Kennwerte [N/mm²]: fc,0,k = 21.0 fv,k = 4.0 E0,mean = 11000 fc,90,k = 2.5 fR,k = 1.0 E90,mean = 370 ft,0,k = 14.0 G,mean = 690 E0,05 = 7400 ft,90,k = 0.4 G,05 = 460 E90,05 = 247

Querschnitt: $1 \times b/h = 6/24 \text{ cm}, e = 80.0 \text{ cm}$

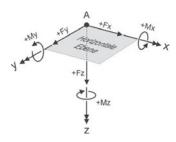
Rechteck: b/h = 6/24 cm

Kennwerte: $A = 144.00 \text{ cm}^2$, $Wy = 576.00 \text{ cm}^3$, $Iy = 6912 \text{ cm}^4$ g = 0.07 kN/m, $Wz = 144.00 \text{ cm}^3$, $Iz = 432 \text{ cm}^4$

Grenzzustand der Tragfähigkeit

Nachweise

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Feld 1	1	6.11	Biegung 1.29 / 11.08 + 0.70 x (0.00 / 13.30) um die y-Achse	0.116
Stz. 2,L	1	6.13	Schub 0.18 / 1.85 aus Vz	0.098
Feld 1	1	NA.60	Biege- und Biegedrillknicken zweiachsig 0.00/(0.81x9.69) + 1.29/(0.83x11.08) + (0.00/13.30) ² Hauptrichtung: y-Achse, Ausweichen in y-Richtung	0.140
Feld 1		NA.61	0.00/(0.09x9.69) + (1.29/(0.83x11.08)) ² 0.00/13.30 Hauptrichtung: z-Achse, Ausweichen in y-Richtung	


Grenzzustand der Gebrauchstauglichkeit

Nachweis der Verformung

Ort	KNr.	Gleichung	Zwischenwerte und	Details	Ausnutzung
Feld 1	75		Anfangsverformung		
			0.09 / 1.13		0.076

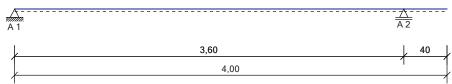
Weiterleitung der Einwirkungen (charakt.)

Die Kraftartrichtungen sind auf das globale Koordinatensystem bezogen. Dabei ist der Betrag der Kraftart $\,$ q in [kN/m].

Lager	Kraftart	Kategorie	Maximal	Minimal	Volllast
1	dx	G	_	_	0.00
		Q,W	0.47	-0.47	0.47
		Summe,k	0.47	-0.47	0.47
	qz	G	1.73	1.73	1.73
		Q,S1	0.54	0.27	0.54
		Q,W	0.23	-1.06	-1.06
		Summe,k	2.51	0.95	1.22
2	qx	G	_	_	0.00
	qz	G	1.85	1.85	1.85
		Q,S1	1.09	0.82	1.09
		Q,W	0.23	-2.01	-2.01
		Summe,k	3.17	0.66	0.93
3	qx	G	_	_	0.00
	qz	G	1.73	1.73	1.73
		Q,S1	0.54	0.27	0.54
		Q,W	0.25	-1.06	-1.06
		Summe,k	2.53	0.95	1.22

POS.1.06 NOKGORDING

Programm: 062A, Vers: 01.04.003 12/2017, Lizenz: SN

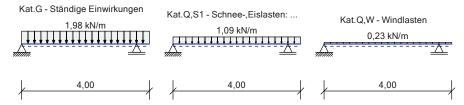

Grundlagen: DIN EN 1990/NA: 2010-12

DIN EN 1991-1-1/NA: 2010-12 DIN EN 1995-1-1/NA: 2013-08

System

- Stabtragwerk

System in z-Richtung


Feldlängen in Z-Richtung
Feld 1 Kr,re
Stützweite [m] 3.60 0.40

Auflagerdaten in Z-Richtung — Lagerung / Federn —								
Nr.	Ort	Lagerung	la	ai	Cw,z	Cw,x	Cd,y	
[-]	[m]	[-]	[cm]	[cm]	[kN/cm]	[kN/cm]	[kNm/cm/m]	
1	0.00	frei drehbar	10.0	5.0	fest	fest	_	
2	3.60	frei drehbar	10.0	5.0	fest	_	_	

Stabdaten und Nutzungsklassen

Stab		
Länge	[m]	4.00
Nutzur	ngsklasse	1

Einwirkungen

Erläuterungen zu den Einwirkungen

qz = Lokale Streckenlast in z-Richtung

a = horizontaler Abstand [m] vom Systemanfang

c = horizontale Lastlänge [m]

Streckeneinwirkungen [kN/m]

				а	C	Betra	g,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Pos.1.05 Aufl. 2	qz	G	1	0.00	4.00	1.85	1.85	-
	qz	Q,S1	1	0.00	4.00	1.09	1.09	_
	qz	Q,W	1	0.00	4.00	0.23	0.23	_
Balkeneigengewicht	qz	G	1	0.00	4.00	0.13	0.13	_

Kategorien und Kombinationsbeiwerte

Kate-			Komb	feldw.		
gorie	Bezeichnung	KLED	Psi0	Psil	Psi2	Ansatz
G	Ständige Einwirkungen	ständig	-	-	-	
Q,S1	Schnee-,Eislasten: Höhe <= NN	kurz	0.50	0.20	-	nein
	+1000 m					
Q,W	Windlasten	kurz	0.60	0.20	_	nein

		— Teilsicherheitsbeiwerte –				
Nachweis	Situation	G,inf	G,sup	Q1	Qi	A
STR	Ständig und vorübergehend	1.00	1.35	1.50	1.50	_
GZG	Quasi ständig	1.00	1.00	1.00	1.00	_
	Charakteristisch	1.00	1.00	1.00	1.00	_
EQU	Ständig und vorübergehend 1)	0.95	1.05	1.50	1.50	-

STR = Versagen oder übermäßige Verformungen des Tragwerks

GZG = Gebrauchstauglichkeit

EQU = Verlust der Lagesicherheit

1) DIN EN 1990/NA(DE), Tab.NA.A.1.2(A) kl. Schwankungen

Kombinationen

KNr.	LF	BemSituation	Kombination	KLED
1	1	EQU, P/T	Gsup	ständig
13	1	STR, P/T	Gsup + Q,S1	kurz
23	1	GZG, char	G + Q,S1 + (Q,W)	kurz¹

Erläuterungen

KLED : Klasse der Lasteinwirkungsdauer

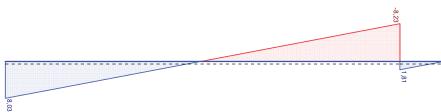
DIN EN 1995-1-1/NA:2010-12, 2.3.1.2 (2)P, Tabelle NA.1 Fußnote b Für kmod wird der Mittelwert zwischen kurz und sehr kurz verwendet.

Nachweise:

EQU : Verlust der Lagesicherheit
GZG : Gebrauchstauglichkeit


STR : Versagen oder übermäßige Verformungen des Tragwerks

Bemessungssituationen: char : Charakteristisch


P/T : Ständig und vorübergehend

Schnittgrößen pro Träger:

Momente My [kNm]

Querkräfte Vz [kN]

Stützmomente:

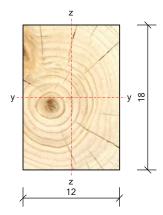
Stz.	min.Ms	max.Ms	x0,li	x0,re	Stz.	min.Ms	max.Ms	x0,li	x0,re
Nr.	[kNm]	[kNm]	[m]	[m]	Nr.	[kNm]	[kNm]	[m]	[m]
1	_	_	_	_	2	-0.16	-0.36	0.04	

Feldmomente:

Feld	max.Mf	x	min.Mf	x	$\times 01$	x02	max.Nx	min.Nx
Nr.	[kNm]	[m]	[kNm]	[m]	[m]	[m]	[kN]	[kN]
1	7.13	1.78	3.13	1.78	_	3.56	_	_

Auflager-, Querkräfte:

Stz.	max.Az	min.Az	max.Ax	min.Ax	min.Vl	max.Vr	${\tt max.Vl}$	min.Vr
Nr.	[kN]	[kN]						
1	8.03	3.52	_	_	-	8.03	_	3.52
2	10.03	4.40	_	_	-8.23	1.81	-3.61	0.79


Bemessung

Baustoff: C24 (DIN EN 338)

Kennwerte	[N/mm²]:	fc,0,k	=	21.0	fv,k	=	4.0	E0,mean	=	11000
		fc,90,k	=	2.5	fR,k	=	1.0	E90,mean	=	370
		ft,0,k	=	14.0	G,mean	=	690	E0,05	=	7400
		ft,90,k	=	0.4	G,05	=	460	E90,05	=	247

Querschnitt: b/h = 12/18 cm

Rechteck: b/h = 12/18 cm

Kennwerte: $A = 216.00 \text{ cm}^2$, $Wy = 648.00 \text{ cm}^3$, $Iy = 5832 \text{ cm}^4$ g = 0.11 kN/m, $Wz = 432.00 \text{ cm}^3$, $Iz = 2592 \text{ cm}^4$

Grenzzustand der Tragfähigkeit

Nachweise

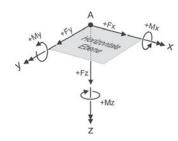
Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Feld 1	13	6.11	Biegung $10.51 / 16.62 + 0.70 \times (0.00 / 17.37)$ um die y-Achse	0.632
Feld 1	13	6.13	Schub 0.95 / 2.77 aus Vz	0.344
Feld 1	13	NA.60	Biege- und Biegedrillknicken zweiachsig 0.00/(1.06x14.54) + 10.51/(1.00x16.62) + (0.00/17.37) ² Hauptrichtung: y-Achse, Ausweichen in y-Richtung	
Feld 1		NA.61	0.00/(1.06x14.54) + (10.51/(1.00x16.62)) 0.00/17.37 Hauptrichtung: z-Achse, Ausweichen in y-Richtung	
Stz. 2	13	6.3	Querdruck 0.50 / (1.00 x 1.73)	0.288
Stz. 1	1	6.7	Lagesicherheit Keine abhebenden Kräfte.	0.000

Grenzzustand der Gebrauchstauglichkeit

Projekt 4010

Leever

Pos 1.06 Seite 52


Nachweis der Verformung

Nachweise auf positive Verformungen beschränkt!

Ort	KNr.	Gleichung	Zwischenwerte un	d Details	Ausnutzung
Feld 1	23		Anfangsverformun	a 	
			1.06 / 1.20		0.884

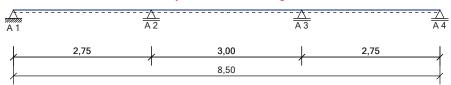
Weiterleitung der Einwirkungen (charakt.)

Die Kraftartrichtungen sind auf das globale Koordinatensystem bezogen. Dabei ist der Betrag der Kraftart F in [kN].

Lager	Kraftart	G	Q,S1	Q,W	Summe,k
1	FZ	3.52	1.94	0.41	5.87
2	FZ	4.40	2.42	0.51	7.33

POS.1.07 GORDING

Programm: 062A, Vers: 01.04.003 12/2017, Lizenz: SN


Grundlagen: DIN EN 1990/NA: 2010-12

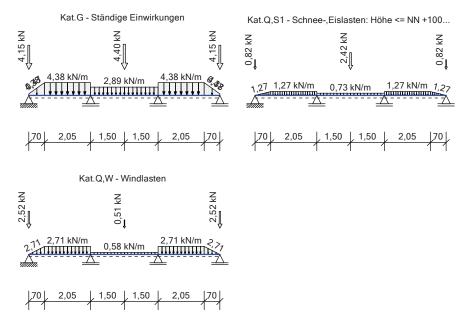
DIN EN 1991-1-1/NA: 2010-12 DIN EN 1995-1-1/NA: 2013-08

System

- Stabtragwerk

System in z-Richtung

Feldlängen in Z-Richtung


rета				3
Stützweite	[m]	2.75	3.00	2.75

Auflagerdaten in Z-Richtung — Lagerung / Federn —							
Nr.	Ort	Lagerung	la	ai	Cw,z	Cw,x	Cd,y
[-]	[m]	[-]	[cm]	[cm]	[kN/cm]	[kN/cm]	[kNm/cm/m]
1	0.00	frei drehbar	10.0	5.0	fest	fest	_
2	2.75	frei drehbar	10.0	5.0	fest	_	-
3	5.75	frei drehbar	10.0	5.0	fest	_	-
4	8.50	frei drehbar	10.0	5.0	fest	_	_

Stabdaten und Nutzungsklassen

Stab		1
Länge	[m]	8.50
Nutzun	gsklasse	1

Einwirkungen

Erläuterungen zu den Einwirkungen

Fz = Lokale Einzellast in z-Richtung

qz = Lokale Streckenlast in z-Richtung

a = horizontaler Abstand [m] vom Systemanfang

c = horizontale Lastlänge [m]

Streckeneinwirkungen [kN/m]

				a	С	Betra	a,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Pos.1.01 Aufl. 2	qz	G	1	0.00	0.70	0.30	4.21	_
	qz	Q,S1	1	0.00	0.70	-	1.27	-
	qz	Q,W	1	0.00	0.70	_	2.71	_
	qz	G	1	0.70	2.05	4.21	4.21	_
	qz	Q,S1	1	0.70	2.05	1.27	1.27	-
	qz	Q,W	1	0.70	2.05	2.71	2.71	-
Pos.1.02 Aufl. 1	qz	G	1	2.75	3.00	2.72	2.72	-
	qz	Q,S1	1	2.75	3.00	0.73	0.73	-
	qz	Q,W	1	2.75	3.00	0.58	0.58	-
Pos.1.01 Aufl. 2	qz	G	1	5.75	2.05	4.21	4.21	-
	qz	Q,S1	1	5.75	2.05	1.27	1.27	-
	qz	Q,W	1	5.75	2.05	2.71	2.71	-
	qz	G	1	7.80	0.70	4.21	0.30	_
	qz	Q,S1	1	7.80	0.70	1.27	_	_
	qz	Q,W	1	7.80	0.70	2.71	_	-
Balkeneigengewicht	qz	G	1	0.00	8.50	0.17	0.17	_

Einzeleinwirkungen [kN]

Einwirkung aus	Тур	Kat.	EWG	a[m]	Betrag,k	Abmin.
Pos.1.04 Aufl. 2	Fz	G	1	0.00	4.15	_
	Fz	Q,S1	1	0.00	0.82	_
	Fz	Q,W	1	0.00	2.52	_
Pos.1.06 Aufl. 2 LF 1	Fz	G	1	4.25	4.40	_
	Fz	Q,S1	1	4.25	2.42	_
	Fz	Q,W	1	4.25	0.51	_
Pos.1.04 Aufl. 2	Fz	G	1	8.50	4.15	_
	Fz	Q,S1	1	8.50	0.82	_
	Fz	Q,W	1	8.50	2.52	_

Kategorien und Kombinationsbeiwerte

Kate-			Komb	oBeiw	erte	feldw.
gorie	Bezeichnung	KLED	Psi0	Psi1	Psi2	Ansatz
G	Ständige Einwirkungen	ständig	-	-	-	
Q,S1	Schnee-,Eislasten: Höhe <= NN +1000 m	kurz	0.50	0.20	-	nein
Q,W	Windlasten	kurz	0.60	0.20	-	nein

		— Teilsicherheitsbeiwerte —						
Nachweis	Situation	G,inf	G,sup	Q1	Qi	A		
STR	Ständig und vorübergehend	1.00	1.35	1.50	1.50	-		
GZG	Quasi ständig	1.00	1.00	1.00	1.00	-		
	Charakteristisch	1.00	1.00	1.00	1.00	_		
EQU	Ständig und vorübergehend 1)	0.95	1.05	1.50	1.50	_		

STR = Versagen oder übermäßige Verformungen des Tragwerks

GZG = Gebrauchstauglichkeit

EQU = Verlust der Lagesicherheit

1) DIN EN 1990/NA(DE), Tab.NA.A.1.2(A) kl. Schwankungen

Kombinationen

KNr.	LF	BemSituation	Kombination	KLED
1	1	EQU, P/T	Gsup	ständig
11	1	STR, P/T	Gsup	ständig
19			Gsup + Q,W + (Q,S1)	kurz¹
25	1	GZG, char	G + Q,W + (Q,S1)	kurz¹

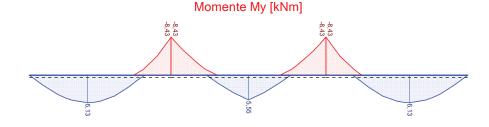
Erläuterungen

KLED : Klasse der Lasteinwirkungsdauer

DIN EN 1995-1-1/NA:2010-12, 2.3.1.2 (2)P, Tabelle NA.1 Fußnote b Für kmod wird der Mittelwert zwischen kurz und sehr kurz verwendet.

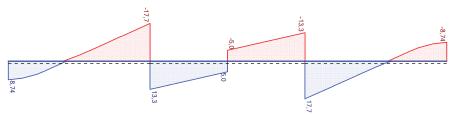
Nachweise:

EQU : Verlust der Lagesicherheit
GZG : Gebrauchstauglichkeit


STR : Versagen oder übermäßige Verformungen des Tragwerks

Bemessungssituationen:

char : Charakteristisch


P/T : Ständig und vorübergehend

Schnittgrößen pro Träger:

INGENIEURBÜRO GRUMMEL ** BUCHWEIZENWEG 14 ** 49716 MEPPEN Projekt 4010 Leever Pos 1.07 Seite 55

Querkräfte Vz [kN]

Stützmomente:

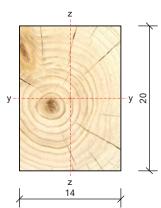
Stz.	min.Ms	${\tt max.Ms}$	imes 0,li	x0,re	Stz.	min.Ms	${\tt max.Ms}$	$ exttt{x0,li}$	x0,re
Nr.	[kNm]	[kNm]	[m]	[m]	Nr.	[kNm]	[kNm]	[m]	[m]
1	_	_	-	_	2	-3.88	-8.43	0.73	0.90
3	-3.88	-8.43	0.90	0.70	4	_	_	_	_

Feldmomente:

Feld	max.Mf	x	min.Mf	x	x01	x02	max.Nx	min.Nx
Nr.	[kNm]	[m]	[kNm]	[m]	[m]	[m]	[kN]	[kN]
1	6.13	1.13	2.23	1.08	_	2.23	_	_
2	5.55	1.50	2.24	1.50	0.68	2.32	_	_
3	6.13	1.62	2.23	1.65	0.52	2.75	_	_

Auflager-, Querkräfte:

Stz.	max.Az	min.Az	max.Ax	min.Ax	min.Vl	max.Vr	max.Vl	min.Vr
Nr.	[kN]							
1	18.74	7.51	-	-	-	8.74	-	3.36
2	30.18	13.85	-	-	-17.71	13.29	-7.32	6.54
3	30.18	13.85	-	-	-13.29	17.71	-6.54	7.32
4	18.74	7.51	_	_	-8.74	_	-3.36	_


Bemessung

Baustoff: C24 (DIN EN 338)

<pre>Kennwerte [N/mm²]:</pre>	fc,0,k = 21.0	fv,k =	4.0	E0,mean	= 11000
	fc,90,k = 2.5	fR,k =	1.0	E90,mean	= 370
	ft,0,k = 14.0	G,mean =	690	E0,05	= 7400
	ft,90,k = 0.4	G,05 =	460	E90,05	= 247

Querschnitt: b/h = 14/20 cm

Rechteck: b/h = 14/20 cm

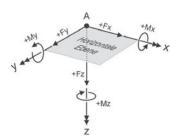
Kennwerte: $A = 280.00 \text{ cm}^2$, $Wy = 933.33 \text{ cm}^3$, $Iy = 9333 \text{ cm}^4$ g = 0.14 kN/m, $Wz = 653.33 \text{ cm}^3$, $Iz = 4573 \text{ cm}^4$

Grenzzustand der Tragfähigkeit

Nachweise

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Feld 1	11	6.11	Biegung 5.61 / 11.08 + 0.70 x (0.00 / 11.23) um die y-Achse	0.507
Stz. 2,L	19	6.13	Schub 1.61 / 3.08 aus Vz	0.522
Feld 1	11	NA.60	Biege- und Biegedrillknicken zweiachsig 0.00/(1.06x9.69) + 5.61/(1.00x11.08) + (0.00/11.23) ² Hauptrichtung: y-Achse, Ausweichen in y-	0.507
Feld 1		NA.61	Richtung 0.00/(1.06x9.69) + (5.61/(1.00x11.08)) ² 0.00/11.23 Hauptrichtung: z-Achse, Ausweichen in y-Richtung	
Stz. 2	11	6.3	Querdruck 0.83 / (1.00 x 1.15)	0.724
Stz. 1	1	6.7	Lagesicherheit Keine abhebenden Kräfte.	0.000

Grenzzustand der Gebrauchstauglichkeit


Nachweis der Verformung

Nachweise auf positive Verformungen beschränkt!

Ort	KNr.	Gleichung Zwischenwerte und Details	Ausnutzung
Feld 1	25	Anfangsverformung	
		0.27 / 0.92	0.292

Weiterleitung der Einwirkungen (charakt.)

Die Kraftartrichtungen sind auf das globale Koordinatensystem bezogen. Dabei ist der Betrag der Kraftart F in [kN].

Lager	Kraftart	G	Q,S1	Q,W	Summe,k
1	FZ	7.51	1.67	4.90	14.08
2	FZ	13.85	4.50	5.25	23.60
3	FZ	13.85	4.50	5.25	23.60
4	FZ	7.51	1.67	4.90	14.08

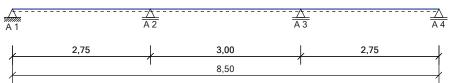
Projekt 4010

Leever

Pos 1.08 Seite 57

POS.1.08 GORDING

Programm: 062A, Vers: 01.04.003 12/2017, Lizenz: SN


Grundlagen: DIN EN 1990/NA: 2010-12

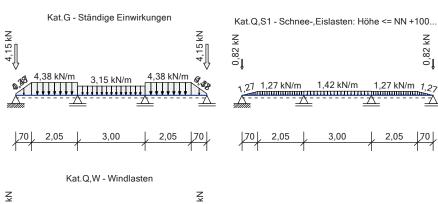
DIN EN 1991-1-1/NA: 2010-12 DIN EN 1995-1-1/NA: 2013-08

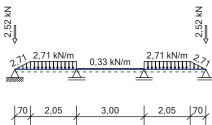
System

- Stabtragwerk

System in z-Richtung

Feldlängen in Z-Richtung


Feld	1	2	3
Stützweite [m]	2 75	3 00	2 75


Aufl	agerda	ten in Z-Richtung		Lagerung / Federn			
Nr.	Ort	Lagerung	la	ai	Cw,z	Cw,x	Cd,y
[-]	[m]	[–]	[cm]	[cm]	[kN/cm]	[kN/cm]	[kNm/cm/m]
1	0.00	frei drehbar	10.0	5.0	fest	fest	-
2	2.75	frei drehbar	10.0	5.0	fest	_	_
3	5.75	frei drehbar	10.0	5.0	fest	_	-
4	8.50	frei drehbar	10.0	5.0	fest	_	-

Stabdaten und Nutzungsklassen

Stab		1
Länge	[m]	8.50
Nutzur	ngsklasse	1

Einwirkungen

Erläuterungen zu den Einwirkungen

Fz = Lokale Einzellast in z-Richtung

qz = Lokale Streckenlast in z-Richtung

= horizontaler Abstand [m] vom Systemanfang

= horizontale Lastlänge [m]

Streckeneinwirkungen [kN/m]

				а	С	Betra	g,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Pos.1.01 Aufl. 4	qz	G	1	0.00	0.70	0.30	4.21	-
	qz	Q,S1	1	0.00	0.70	_	1.27	-
	qz	Q,W	1	0.00	0.70	_	2.71	_
	qz	G	1	0.70	2.05	4.21	4.21	_
	qz	Q,S1	1	0.70	2.05	1.27	1.27	_
	qz	Q,W	1	0.70	2.05	2.71	2.71	_
Pos.1.02 Aufl. 3	qz	G	1	2.75	3.00	2.98	2.98	_
	qz	Q,S1	1	2.75	3.00	1.42	1.42	_
	qz	Q,W	1	2.75	3.00	0.33	0.33	_
Pos.1.01 Aufl. 4	qz	G	1	5.75	2.05	4.21	4.21	_
	qz	Q,S1	1	5.75	2.05	1.27	1.27	_
	qz	Q,W	1	5.75	2.05	2.71	2.71	_
	qz	G	1	7.80	0.70	4.21	0.30	_
	qz	Q,S1	1	7.80	0.70	1.27	_	_
	qz	Q,W	1	7.80	0.70	2.71	_	_
Balkeneigengewicht	qz	G	1	0.00	8.50	0.17	0.17	_

Einzeleinwirkungen [kN]

Einwirkung aus	Тур	Kat.	EWG	a[m]	Betrag,k	Abmin.
Pos.1.04 Aufl. 2	Fz	G	1	0.00	4.15	_
	Fz	Q,S1	1	0.00	0.82	_
	Fz	Q,W	1	0.00	2.52	_
	Fz	G	1	8.50	4.15	_
	Fz	Q,S1	1	8.50	0.82	_
	Fz	Q,W	1	8.50	2.52	_

Kategorien und Kombinationsbeiwerte

Kate-			Komb	feldw.		
gorie	Bezeichnung	KLED	Psi0	Psi1	Psi2	Ansatz
G	Ständige Einwirkungen	ständig	_	_	_	
Q,S1	Schnee-,Eislasten: Höhe <= NN	kurz	0.50	0.20	-	nein
	+1000 m					
Q,W	Windlasten	kurz	0.60	0.20	_	nein

		— Teilsicherheitsbeiwe				te —
Nachweis	Situation	G,inf	G,sup	Q1	Qi	A
STR	Ständig und vorübergehend	1.00	1.35	1.50	1.50	_
GZG	Quasi ständig	1.00	1.00	1.00	1.00	_
	Charakteristisch	1.00	1.00	1.00	1.00	-
EQU	Ständig und vorübergehend 1)	0.95	1.05	1.50	1.50	_

STR = Versagen oder übermäßige Verformungen des Tragwerks

GZG = Gebrauchstauglichkeit

EQU = Verlust der Lagesicherheit

1) DIN EN 1990/NA(DE), Tab.NA.A.1.2(A) kl. Schwankungen

Kombinationen

ED
indig
CZ ¹
ZZ ¹

Erläuterungen

KLED : Klasse der Lasteinwirkungsdauer

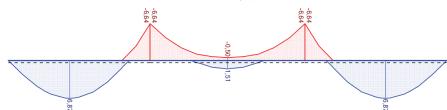
DIN EN 1995-1-1/NA:2010-12, 2.3.1.2 (2)P, Tabelle NA.1 Fußnote b Für kmod wird der Mittelwert zwischen kurz und sehr kurz verwendet.

Nachweise:

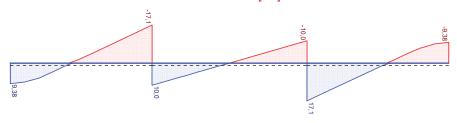
EQU : Verlust der Lagesicherheit

GZG : Gebrauchstauglichkeit

STR : Versagen oder übermäßige Verformungen des Tragwerks


${\tt Bemessungssituationen:}$

char : Charakteristisch


P/T : Ständig und vorübergehend

Schnittgrößen pro Träger:

Momente My [kNm]

Querkräfte Vz [kN]

Stützmomente:

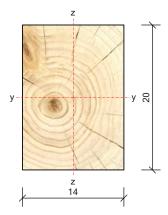
Stz.	min.Ms	max.Ms	x0,li	x0,re	Stz.	min.Ms	max.Ms	x0,li	x0,re
Nr.	[kNm]	[kNm]	[m]	[m]	Nr.	[kNm]	[kNm]	[m]	[m]
1	-	_	-	-	2	-2.98	-6.64	0.55	_
3	-2.98	-6.64	_	0.55	4	_	_	_	_

Feldmomente:

Feld	max.Mf	х	min.Mf	х	x01	x02	max.Nx	min.Nx
Nr.	[kNm]	[m]	[kNm]	[m]	[m]	[m]	[kN]	[kN]
1	6.87	1.19	2.60	1.15	_	2.34	-	_
2	1.51	1.50	-0.50	1.50	0.79	2.21	_	_
3	6.87	1.56	2.59	1.65	0.41	2.75	_	_

Auflager-, Querkräfte:

Stz.	max.Az	min.Az	max.Ax	min.Ax	min.Vl	max.Vr	max.Vl	min.Vr
Nr.	[kN]							
1	19.38	7.84	_	_	-	9.38	-	3.69
2	26.25	11.71	_	_	-17.08	10.02	-6.99	4.73
3	26.25	11.71	-	-	-10.02	17.08	-4.73	6.99
4	19.38	7.84	_	_	-9.38	_	-3.69	_


Bemessung

Baustoff: C24 (DIN EN 338)

Kennwerte	$[N/mm^2]$:	fc,0,k	=	21.0	fv,k	=	4.0	E0,mean	=	11000
		fc,90,k	=	2.5	fR,k	=	1.0	E90,mean	=	370
		ft,0,k	=	14.0	G,mean	=	690	E0,05	=	7400
		ft,90,k	=	0.4	G,05	=	460	E90,05	=	247

Querschnitt: b/h = 14/20 cm

Rechteck: b/h = 14/20 cm

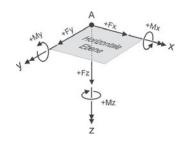
Kennwerte: $A = 280.00 \text{ cm}^2$, $Wy = 933.33 \text{ cm}^3$, $Iy = 9333 \text{ cm}^4$ g = 0.14 kN/m, $Wz = 653.33 \text{ cm}^3$, $Iz = 4573 \text{ cm}^4$

Grenzzustand der Tragfähigkeit

Nachweise

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Feld 1	19	6.11	Biegung $7.36 / 18.46 + 0.70 \times (0.00 / 18.72)$ um die y-Achse	0.399
Stz. 3,R	19	6.13	Schub 1.54 / 3.08 aus Vz	0.499
Feld 1	19	NA.60	Biege- und Biegedrillknicken zweiachsig $0.00/(1.06 \times 16.15) + 7.36/(1.00 \times 18.46) + (0.00/18.72)^2$ Hauptrichtung: y-Achse, Ausweichen in y-	0.399
Feld 1		NA.61	Richtung $0.00/(1.06 \times 16.15) + (7.36/(1.00 \times 18.46))^2$ $0.00/18.72$ Hauptrichtung: z-Achse, Ausweichen in y-Richtung	
Stz. 1	19	6.3	Querdruck 1.38 / (1.00 x 1.92)	0.720
Stz. 1	1	6.7	Lagesicherheit Keine abhebenden Kräfte.	0.000

Grenzzustand der Gebrauchstauglichkeit


Nachweis der Verformung

Nachweise auf positive Verformungen beschränkt!

Ort	KNr.	Gleichung Zwischenwerte und Details	Ausnutzung
Feld 1	25	Anfangsverformung	
		0.32 / 0.92	0.353

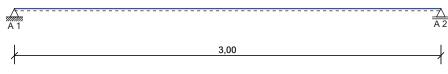
Weiterleitung der Einwirkungen (charakt.)

Die Kraftartrichtungen sind auf das globale Koordinatensystem bezogen. Dabei ist der Betrag der Kraftart F in [kN].

Lager	Kraftart	G	Q,S1	Q,W	Summe,k
1	FZ	7.84	1.76	4.98	14.58
2	FZ	11.71	4.24	4.54	20.49
3	FZ	11.71	4.24	4.54	20.49
4	FZ	7.84	1.76	4.98	14.58

POS.1.09 HOUTEN LIGGER

Programm: 062A, Vers: 01.04.003 12/2017, Lizenz: SN


Grundlagen: DIN EN 1990/NA: 2010-12

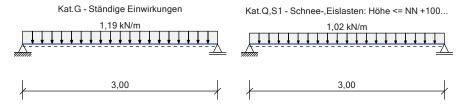
DIN EN 1991-1-1/NA: 2010-12 DIN EN 1995-1-1/NA: 2013-08

System

- Stabtragwerk

System in z-Richtung

Feldlängen in Z-Richtung


reid		
Stützweite	[m]	3.00

Auflagerdaten in Z-Richtung 1						gerung / I	Federn
Nr.	Ort	Lagerung	la	ai	Cw,z	Cw,x	Cd,y
[-]	[m]	[-]	[cm]	[cm]	[kN/cm]	[kN/cm]	[kNm/cm/m]
1	0.00	frei drehbar	12.0	6.0	fest	fest	_
2	3.00	frei drehbar	12.0	6.0	fest	_	_

Stabdaten und Nutzungsklassen

Stab	1
Länge [m]	3.00
Nutzungsklasse	1

Einwirkungen

Erläuterungen zu den Einwirkungen

qz = Lokale Streckenlast in z-Richtung

a = horizontaler Abstand [m] vom Systemanfang

c = horizontale Lastlänge [m]

Streckeneinwirkungen [kN/m]

				a	С	Betra	g,k	Abmin.
Einwirkung aus	Typ	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Pos.1.02 Aufl. 4	qz	G	1	0.00	3.00	1.09	1.09	-
	qz	Q,S1	1	0.00	3.00	1.02	1.02	_
Balkeneigengewicht	qz	G	1	0.00	3.00	0.10	0.10	_

Kategorien und Kombinationsbeiwerte

Kate-			Komb	Beiw	erte
gorie	Bezeichnung	KLED	Psi0	Psi1	Psi2
G	Ständige Einwirkungen	ständig	-	-	_
Q,S1	Schnee-,Eislasten: Höhe <= NN +1000 m	kurz	0.50	0.20	-

		— Teilsicherheitsbeiwerte —				te —
Nachweis	Situation	G,inf	G,sup	Q1	Qi	A
STR	Ständig und vorübergehend	1.00	1.35	1.50	1.50	_
GZG	Quasi ständig	1.00	1.00	1.00	1.00	_
	Charakteristisch	1.00	1.00	1.00	1.00	-
EQU	Ständig und vorübergehend 1)	0.95	1.05	1.50	1.50	_

STR = Versagen oder übermäßige Verformungen des Tragwerks

GZG = Gebrauchstauglichkeit

EQU = Verlust der Lagesicherheit

1) DIN EN 1990/NA(DE), Tab.NA.A.1.2(A) kl. Schwankungen

Kombinationen

KNr.	LF	BemSituation	Kombination	KLED
1	1	EQU, P/T	Gsup	ständig
7	1	STR, P/T	Gsup + Q,S1	kurz
10	1	GZG, char	G + Q,S1	kurz

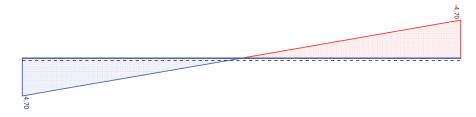
Erläuterungen

KLED : Klasse der Lasteinwirkungsdauer

Nachweise:

EQU : Verlust der Lagesicherheit
GZG : Gebrauchstauglichkeit

STR : Versagen oder übermäßige Verformungen des Tragwerks


Bemessungssituationen: char : Charakteristisch

P/T : Ständig und vorübergehend

Schnittgrößen pro Träger:

Momente My [kNm]

Querkräfte Vz [kN]

Feldmomente:

Feld	max.Mf	х	min.Mf	X	x01	x02	max.Nx	min.Nx
Nr.	[kNm]	[m]	[kNm]	[m]	[m]	[m]	[kN]	[kN]
1	3.53	1.50	1.34	1.50	_	3.00	-	_

Auflager-, Querkräfte:

Stz.	max.Az	min.Az	max.Ax	min.Ax	min.Vl	max.Vr	max.Vl	min.Vr
Nr.	[kN]							
1	4.70	1.79	-	-	_	4.70	_	1.79
2	4.70	1.79	_	_	-4.70	_	-1.79	_

Bemessung

Baustoff: C24 (DIN EN 338)

Kennwerte [N/mm²]: fc,0,k = 21.0 fv,k = 4.0 E0,mean = 11000 fc,90,k = 2.5 fR,k = 1.0 E90,mean = 370 ft,0,k = 14.0 G,mean = 690 E0,05 = 7400 ft,90,k = 0.4 G,05 = 460 E90,05 = 247

Querschnitt: b/h = 12/14 cm

Rechteck: b/h = 12/14 cm

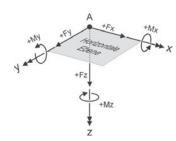
Kennwerte: $A = 168.00 \text{ cm}^2$, $Wy = 392.00 \text{ cm}^3$, $Iy = 2744 \text{ cm}^4$ g = 0.08 kN/m, $Wz = 336.00 \text{ cm}^3$, $Iz = 2016 \text{ cm}^4$

Grenzzustand der Tragfähigkeit

Nachweise

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Feld 1	7	6.11	Biegung $9.00 / 16.85 + 0.70 \times (0.00 / 17.37)$ um die y-Achse	0.534
Stz. 1,R	7	6.13	Schub 0.73 / 2.77 aus Vz	0.263
Feld 1	7	NA.60	Biege- und Biegedrillknicken zweiachsig 0.00/(1.06x14.54) + 9.00/(1.00x16.85) + (0.00/17.37) ² Hauptrichtung: y-Achse, Ausweichen in y-Richtung	0.534
Feld 1		NA.61	0.00/(1.06x14.54) + (9.00/(1.00x16.85)) ² 0.00/17.37 Hauptrichtung: z-Achse, Ausweichen in y-Richtung	
Stz. 1	7	6.3	Querdruck 0.26 / (1.00 x 1.73)	0.151
Stz. 1	1	6.7	Lagesicherheit Keine abhebenden Kräfte.	0.000

Grenzzustand der Gebrauchstauglichkeit


Nachweis der Verformung

Nachweise auf positive Verformungen beschränkt!

Ort	KNr.	Gleichung Zwischenwerte und Details	Ausnutzung
Feld 1	10	Anfangsverformung	
		0.77 / 1.00	0.772

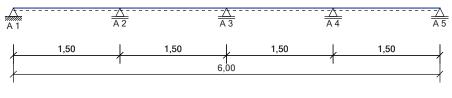
Weiterleitung der Einwirkungen (charakt.)

Die Kraftartrichtungen sind auf das globale Koordinatensystem bezogen. Dabei ist der Betrag der Kraftart F in [kN].

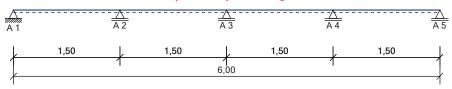
Lager	Kraftart	G	Q,S1	Summe,k
1	FZ	1.79	1.53	3.32
2	FZ	1.79	1.53	3.32

POS.1.10 MUURPLAAT

Programm: 062M, Vers: 01.03.007 01/2018


Grundlagen: DIN EN 1990/NA: 2010-12

DIN EN 1991-1-1/NA: 2010-12 DIN EN 1995-1-1/NA: 2013-08


System:

- Stabtragwerk

System in z-Richtung

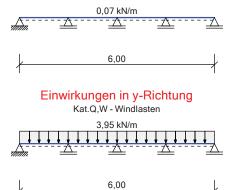
System in y-Richtung

Feldlängen in Z-Richtung

Feld	1	2	3	4
Stützweite [m]	1.50	1.50	1.50	1.50

Feldlängen in Y-Richtung

Feld	1	2	3	4
Stützweite [m]	1.50	1.50	1.50	1.50


Auflagerdaten in Z-Richtung — Lagerung / Federn —											
Nr.	Ort	Lagerung	la	ai	Cw,z	Cw,x	Cd,y				
[-]	[m]	[-]	[cm]	[cm]	[kN/cm]	[kN/cm]	[kNm/cm/m]				
1	0.00	frei drehbar	20.0	10.0	fest	fest	_				
2	1.50	frei drehbar	20.0	10.0	fest	_	_				
3	3.00	frei drehbar	20.0	10.0	fest	_	_				
4	4.50	frei drehbar	20.0	10.0	fest	_	_				
5	6.00	frei drehbar	20.0	10.0	fest	_	-				
Aufl	Auflagerdaten in Y-Richtung — Lagerung / Federn —										

Aull	agcida	cen in i kieneang		Lagerang / Federn				
Nr.	Ort	Lagerung	la	ai	Cw,y	Cw,x	Cd,z	
[-]	[m]	[-]	[cm]	[cm]	[kN/cm]	[kN/cm]	[kNm/cm/m]	
1	0.00	frei drehbar	2.0	1.0	fest	fest	_	
2	1.50	frei drehbar	2.0	1.0	fest	_	-	
3	3.00	frei drehbar	2.0	1.0	fest	_	-	
4	4.50	frei drehbar	2.0	1.0	fest	_	_	
5	6.00	frei drehbar	2.0	1.0	fest	_	_	

Einwirkungen

Einwirkungen in z-Richtung

Kat.G - Ständige Einwirkungen

Erläuterungen zu den Einwirkungen

qy = Lokale Streckenlast in y-Richtung

qz = Lokale Streckenlast in z-Richtung

a = horizontaler Abstand [m] vom Systemanfang

c = horizontale Lastlänge [m]

Streckeneinwirkungen [kN/m]

				а	C	Betra	g,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Pos.1.03 Aufl. 1 * -1	dХ	Q,W	1	0.00	6.00	3.95	3.95	_
Balkeneigengewicht	qz	G	1	0.00	6.00	0.07	0.07	_

Kategorien und Kombinationsbeiwerte

Kate-			Komb	Beiw	erte	feldw.
gorie	Bezeichnung	KLED	Psi0	Psi1	Psi2	Ansatz
G	Ständige Einwirkungen	ständig	-	-	-	_
Q,W	Windlasten	kurz	0.60	0.20	-	nein

— Teilsicherheitsbeiwerte — Nachweis Situation G,inf G,sup Q1 Qi Ständig und vorübergehend 1.00 1.35 1.50 1.50 GZG Quasi ständig 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Charakteristisch 1.00 Ständig und vorübergehend 1) 0.95 1.05 1.50 1.50 EQU

STR = Versagen oder übermäßige Verformungen des Tragwerks

GZG = Gebrauchstauglichkeit

EQU = Verlust der Lagesicherheit

1) DIN EN 1990/NA(DE), Tab.NA.A.1.2(A) kl. Schwankungen

Kombinationen

KNr.	LF	BemSituation	Kombination	KLED
7	1	STR, P/T	Gsup + Q,W	kurz¹
5			Gsup	ständig
1	1	EQU, P/T	Gsup	ständig
9	1	GZG, char	G	ständig
10			G + Q,W	kurz¹

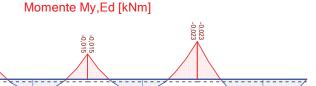
Erläuterungen

KLED : Klasse der Lasteinwirkungsdauer

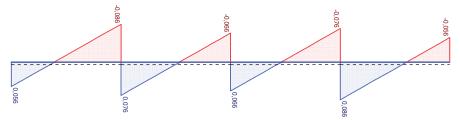
DIN EN 1995-1-1/NA:2010-12, 2.3.1.2 (2)P, Tabelle NA.1 Fußnote b Für kmod wird der Mittelwert zwischen kurz und sehr kurz verwendet.

Nachweise:

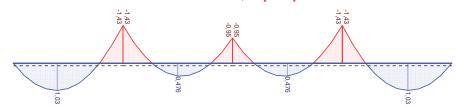
EQU : Verlust der Lagesicherheit
GZG : Gebrauchstauglichkeit

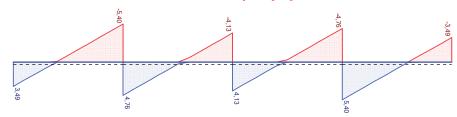

STR : Versagen oder übermäßige Verformungen des Tragwerks

Bemessungssituationen:


char : Charakteristisch

P/T : Ständig und vorübergehend


Schnittgrößen:



Momente Mz,Ed [kNm]

Querkräfte Vy,Ed [kN]

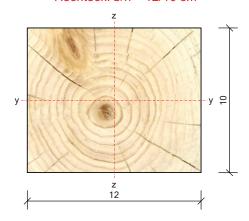
Schnittgrößen (Design)

beinite egroben (bebryn)											
Stab		Ort	Nx,Ed	My,Ed	Mz,Ed	Vy,Ed	Vz,Ed				
		[m]	[kN]	[kNm]	[kNm]	[kN]	[kN]				
1	Nx,Ed min	0.00	_	_	_	_	0.04				
1	max	0.00	_	_	_	3.49	0.06				
4	My, Ed min	0.00	_	-0.02	-1.43	_	0.06				
4	max	0.90	_	0.02	1.03	0.06	_				
3	Mz,Ed min	1.50	_	-0.02	-1.43	-4.76	-0.08				
4	max	0.90	_	0.02	1.03	0.06	_				
1	Vz,Ed min	1.50	_	-0.02	-1.43	-5.40	-0.09				

Stab		Ort [m]	Nx,Ed [kN]	My,Ed [kNm]	Mz,Ed [kNm]	Vy,Ed [kN]	Vz,Ed [kN]
4	max	0.00	-	-0.02	_	5.40	0.09
1	Vy,Ed min	1.50	-	-0.02	-1.43	-5.40	-0.09
4	max	0.00	_	-0.02	_	5.40	0.09

Auflagerkräfte (Design)

	min						max			
	Ax,Ed	Ay,Ed	Az,Ed	My,Ed	Mz,Ed	Ax,Ed	Ay,Ed	Az,Ed	My,Ed	Mz,Ed
Lager	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	-	-	0.04	-	-	-	3.49	0.06	-	_
2	_	-	0.12	_	_	-	10.16	0.16	-	_
3	_	-	0.10	_	_	-	8.25	0.13	_	_
4	_	-	0.12	_	_	_	10.16	0.16	_	_
5	_	-	0.04	-	-	-	3.49	0.06	-	_


Bemessung:

Baustoff: C24 (DIN EN 338)

Kennwerte [N/mm²]: fc,0,k = 21.0 fv,k = 4.0 E0,mean = 11000 fc,90,k = 2.5 fR,k = 1.0 E90,mean = 370 ft,0,k = 14.0 G,mean = 690 E0,05 = 7400 ft,90,k = 0.4 G,05 = 460 E90,05 = 247

Querschnitt: b/h = 12/10 cm

Rechteck: b/h = 12/10 cm

Kennwerte: $A = 120.00 \text{ cm}^2$, $Wy = 200.00 \text{ cm}^3$, $Iy = 1000 \text{ cm}^4$ q = 0.06 kN/m, $Wz = 240.00 \text{ cm}^3$, $Iz = 1440 \text{ cm}^4$

Grenzzustand der Tragfähigkeit

Vorgaben:

Erläuterungen zu den Stabvorgaben:

Beta = Kipplängenbeiwert
1.eff = effektive Stablänge

w.inst = zulässige Durchbiegung für den Anfangszustand

w.netfin = zulässige Durchbiegung für den Endzustand ohne Überhöhung

w.c = Überhöhung

w.fin = zulässige Durchbiegung für den Endzustand mit Überhöhung

NKL = Nutzungsklasse (1: innen/trocken, 2: außen/trocken, 3: außen/naß)

Stab	1 [m]	Beta	<pre>l.eff [m]</pre>	w.inst	w.netfin	w.c [cm]	w.fin	NKL
Stab 1	1.50	1.000	1.50	1/300	1/250	0.0	1/150	1
Stab 2	1.50	1.000	1.50	1/300	1/250	0.0	1/150	1

INGENIEURBÜRO	GRUMMEL	* *	BUCHWEIZENWEG	14	* *	49716	MEPPEN
Projekt 4010	Leever			Pos	z 1	10	Seite 69

Stab	1 [m]	Beta	<pre>l.eff [m]</pre>	w.inst	w.netfin	w.c [cm]	w.fin	NKL
Stab 3	1.50	1.000	1.50	1/300	1/250	0.0	1/150	1
Stab 4	1.50	1.000	1.50	1/300	1/250	0.0	1/150	1

Nachweise

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Stab 3	7	6.11	Biegung	_
			$0.11 / 20.02 + 0.70 \times (5.95 / 19.30)$	0.221
			um die y-Achse	
Stab 3		6.12	$0.70 \times (0.11 / 20.02) + 5.95 / 19.30$	0.312
			um die z-Achse	

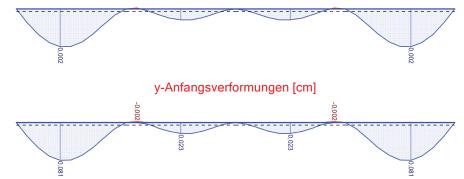
Nachweis der Schubspannung

Ort		KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Stz.	4,R	7	NA.55	Schub zweiachsig	
				$(1.05 / 3.08)^2 + (0.02 / 3.08)^2$	0.117

Stabilitätsnachweis

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Stab 3	7	NA.60	Biege- und Biegedrillknicken zweiachsig	
			0.00/(1.06x16.15) + 0.11/(1.00x20.02) +	0.101
			(5.95/19.30) ²	
			Hauptrichtung: y-Achse, Ausweichen in y-	
			Richtung	
Stab 3		NA.61	$0.00/(1.06x16.15) + (0.11/(1.00x20.02))^{2}$	+ 0.308
			5.95/19.30	
			Hauptrichtung: z-Achse, Ausweichen in y-	
			Richtung	

Nachweis der Auflagerpressung in Z-Richtung

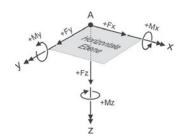

Ort		KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Stz.	2	5	6.3	Querdruck	
				$0.01 / (1.00 \times 1.15)$	0.005

Nachweis der Lagesicherheit in Z-Richtung

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Stz. 1	1	6.7	Lagesicherheit	
			Keine abhebenden Kräfte.	0.000

Grenzzustand der Gebrauchstauglichkeit

z-Anfangsverformungen [cm]



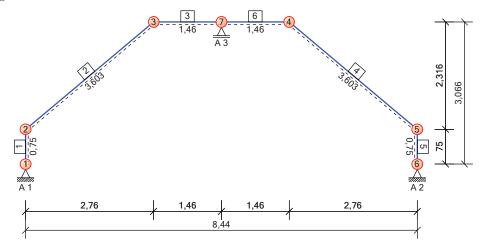
Nachweis der Verformung

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Feld 1	9		Anfangsverformung, z	
			0.00 / 0.50	0.004
Feld 1	10		Anfangsverformung, y	0 161
			0.08 / 0.50	0.161

Weiterleitung der Einwirkungen (charakt.)

Die Kraftartrichtungen sind auf das globale Koordinatensystem bezogen. Dabei ist der Betrag der Kraftart F in [kN].

Lager	Kraftart	G	Q,W	Summe,k
1	FY	-	2.33	2.33
	FZ	0.04	-	0.04
2	FY	-	6.77	6.77
	FZ	0.12	-	0.12
3	FY	-	5.50	5.50
	FZ	0.10	-	0.10
4	FY	-	6.77	6.77
	FZ	0.12	-	0.12
5	FY	-	2.33	2.33
	FZ	0.04	_	0.04

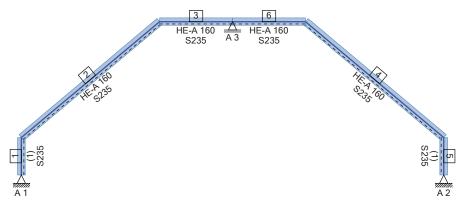

POS.2.01 STALEN SPANT

Programm: 088A, Vers: 01.04.014 12/2016, Lizenz: EC3, EC5

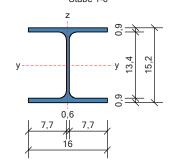
Grundlagen: DIN EN 1990/NA: 2010-12

DIN EN 1991-1-1/NA: 2010-12 DIN EN 1993-1-1/NA: 2010-12

System


Anmerkung

Material


			E-Modul	G-Modul	Alpha-T.	Wichte
_	Nr.	Bezeichnung	$[N/mm^2]$	$[N/mm^2]$	[1/K]	$[kN/m^3]$
	1	Baustahl S235 (EN 10025-2)	210000	81000	0.000012	78.50

			-Teilsich	nerheiten	für die	Systems	steifigke:	it
Nr.		P/T	A	AE	AB	char	frequ	perm
1	S235	1.00	1.00	1.00	1.00	1.00	1.00	1.00

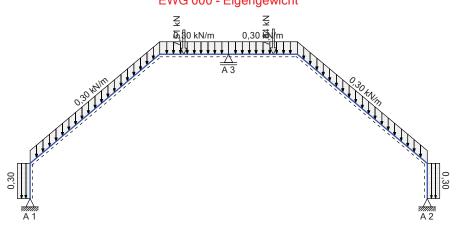
Querschnitte

	Mat.	Winkel	A	Iy
Nr. Anz. Bezeichnung	[-]	[°]	$[cm^2]$	$[cm^4]$
1 1 HE-A 160	1	0.00	38.77	1672.99

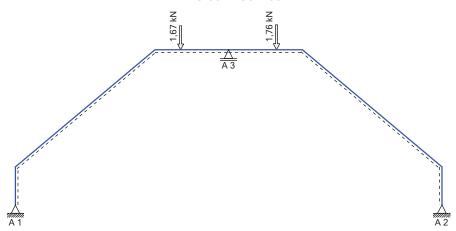
Knoten

Nr.	x[m]	z[m]	Nr.	x[m]	z[m]	Nr.	x[m]	z[m]
1	0.000	0.000	4	5.680	3.066	7	4.220	3.066
2	0.000	0.750	5	8.440	0.750			
3	2.760	3.066	6	8.440	0.000			

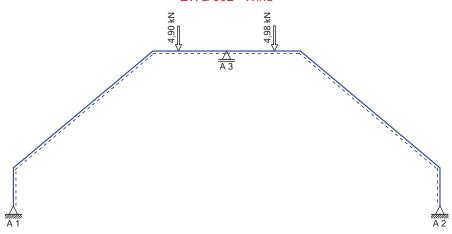
Stäbe


	Knot	en	Gele	nke	Fede	ern	Quer	sch.	Stab-Typ	Neigung	Länge
Nr.	(i)	(j)	(i)	(j)	(i)	(j)	(i)	(j)	[-]	[°]	[m]
1	1	2	_	-	-	_	1	1	Standard	90.00	0.750
2	2	3	_	_	_	_	1	1	Standard	40.00	3.603
3	3	7	-	-	-	_	1	1	Standard	0.00	1.460
4	4	5	_	_	_	_	1	1	Standard	-40.00	3.603
5	5	6	_	_	_	_	1	1	Standard	-90.00	0.750
6	7	4	_	_	_	_	1	1	Standard	0.00	1.460

Lager, Federn


		Winkel	vertikal	horizontal	Moment
Nr.	Knoten	[•]	[kN/cm]	[kN/cm]	[kNm/cm/m]
A1	1	_	starr	starr	frei
A2	6	_	starr	starr	frei
A3	7	-	starr	frei	frei

Einwirkungen


EWG 000 - Eigengewicht

EWG 001 - Schnee

EWG 002 - Wind

EWG Einwirkungsgruppe

- 0 Eigengewicht
- 1 Schnee
- 2 Wind

Kate-			Komb	Beiw	erte
gorie	Bezeichnung	KLED	Psi0	Psi1	Psi2
G	Ständige Einwirkungen	ständig	-	_	-
Q,S1	Schnee-,Eislasten: Höhe <= NN +1000 m	kurz	0.50	0.20	_
Q,W	Windlasten	kurz	0.60	0.20	_

		—Teilsich	erheit	sbeiwe	rte—
Nachweis	Situation	G,inf/sup	Q1	Qi	A
GZG	Charakteristisch	1.00/1.00	1.00	1.00	-
	Häufig	1.00/1.00	1.00	1.00	_
	Quasi ständig	1.00/1.00	1.00	1.00	-
STR	Ständig und vorübergehend	1.00/1.35	1.50	1.50	_

GZG = Gebrauchstauglichkeit

STR = Versagen oder übermäßige Verformungen des Tragwerks

Erläuterungen zu den Einwirkungen

FZ = Globale Einzellast in Z-Richtung

- q = Vertikale Streckenlast bezogen auf die Stablänge
- a = Abstand [m] vom Stabanfang (i), gemessen entlang der Stabachse.
- c = Lastlänge [m], gemessen entlang der Stabachse.

Linienlasten in Stabrichtung q[kN/m]

					a	C	Betra	ıg,k	Faktor
Einwirkung aus	Stäbe	Typ	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Eigengewicht	1-6	α	G	0	_	_	0.30	0.30	_

Stab-Einzellasten FZ[kN]

Einwirkung aus	Stäbe	Typ	Kat.	EWG	a[m]	Betrag,k	Faktor
Pos.1.07 Aufl. 1 LF 1	3	FZ	G	0	0.510	7.51	_
Pos.1.07 Aufl. 1 LF 1	3	FZ	Q,S1	1	0.510	1.67	_
Pos.1.07 Aufl. 1 LF 1	3	FZ	Q,W	2	0.510	4.90	_
Pos.1.08 Aufl. 1 LF 1	6	FZ	G	0	0.950	7.84	_
Pos.1.08 Aufl. 1 LF 1	6	FZ	Q,S1	1	0.950	1.76	-
Pos.1.08 Aufl. 1 LF 1	6	FZ	Q,W	2	0.950	4.98	_

Lastfälle

Nr.	Bezeichnung		EWG
1	Eigengewicht	+ Schnee	0,1
2	Eigengewicht	+ Wind	0,2
3	Eigengewicht	+ Schnee + Wind	0-2

Schnittgrößen

Berech	nnungspa	rameter

bereemangsparameter	
Theorie:	1.Ordnung
Schubverformungen:	Ja
Stabteilung:	1/4
Autom. Kombinatorik:	Ja
Nachweise:	STR = Versagen oder übermäßige Verformungen des
	Tragwerks
	GZG = Gebrauchstauglichkeit
Situationen:	P/T = Ständig und vorübergehend
	A = Außergewöhnlich
	AE = Erdbeben
	char = Charakteristisch
	frequ = Häufiq

Berechnungsparameter

perm = Quasi ständig

Besonderheiten: Teilsicherheitsbeiwerte gemäß DIN EN 1990 Tab.Al.

2(A) Anmerk.1 für den Nachweis EQU.

Außergewöhnliche Bemessungssituationen mit Psi2 für

die vorherrschende veränderliche Einwirkung.

Kombinationen

KNr.	LF	BemSituation	Kombination	KLED
1	1	STR, P/T	Gsup	ständig
2			Ginf	ständig
3			Gsup + Q,S1	kurz
1.0	2	CEED D /EE	G.,	1-
13	3	STR, P/T	Gsup + Q,S1 + (Q,W)	kurz
17			Gsup + Q,W + (Q,S1)	kurz
18			Ginf + Q,W + (Q,S1)	kurz
		_		
19	1	GZG, char	G	ständig
20			G + Q,S1	kurz
21	1	GZG, frequ	G	ständig
22			G + Q,S1	kurz
23	1	GZG, perm	G	ständig
28	2	GZG, frequ	G + Q,W	kurz
				_
33	3	GZG, char	G + Q,S1 + (Q,W)	kurz
35			G + Q,W + (Q,S1)	kurz

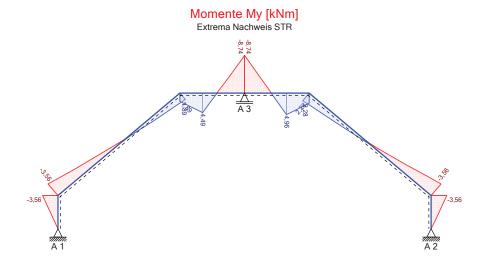
Erläuterungen

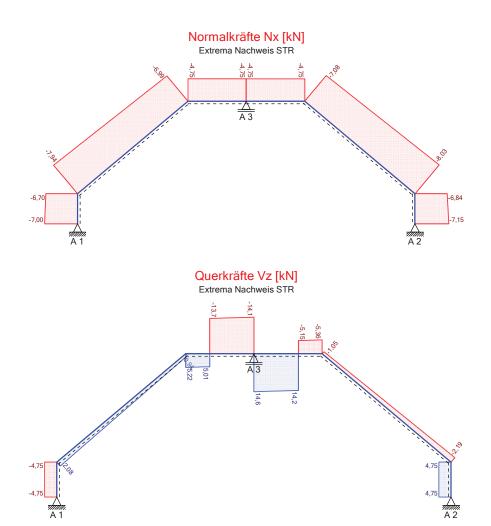
KLED : Klasse der Lasteinwirkungsdauer

Nachweise:

GZG : Gebrauchstauglichkeit

STR : Versagen oder übermäßige Verformungen des Tragwerks


Bemessungssituationen:


char : Charakteristisch

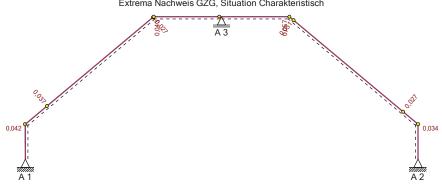
frequ : Häufig

P/T : Ständig und vorübergehend

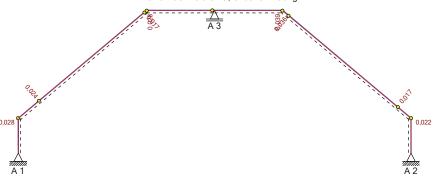
perm : Quasi ständig

Extrema Nachweis STR

Die Markierungen («) kennzeichnen jeweils die Extremwerte (Max/Min) an den Stabenden und, falls vorhanden, im Stabverlauf.

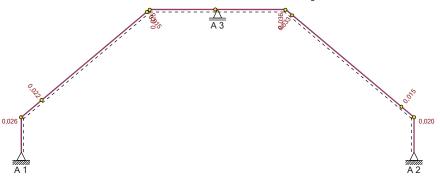

Stab	Kombi-	x	Knoten	My	Vz	Nx
Nr.	nation	[m]	Nr.	[kNm]	[kN]	[kN]
1	1	0.000	1	0.000«	-2.922	-4.649
		0.750	2	-2.192	-2.922	-4.341
	2	0.000	1	_	-2.164«	-3.444
		0.750	2	-1.623	-2.164«	-3.216«
	17	0.000	1	_	-4.746«	-7.004«
		0.750	2	-3.559«	-4.746«	-6.696
2	2	0.000	2	-1.623	1.072	-3.725
		3.603	3	0.726	0.232«	-3.020«
	17	0.000	2	-3.559«	2.079«	-7.940«
		3.603	3	1.888«	0.945	-6.988
3	2	0.000	3	0.726	2.119	-2.164«
		0.510		1.767	1.964	-2.164
		1.460	7	-3.639	-5.835	-2.164«
	17	0.000	3	1.888«	5.216«	-4.746«
		0.510		4.495«	5.006	-4.746
		1.460	7	-8.739«	-14.125«	-4.746«

INGENIEURBÜRO	GRUMMEL 7	* *	BUCHWEIZENWEG	14	* *	49716	MEPPEN
Projekt 4010	Leever			Po	s 2.	.01	Seite 77


Stab Nr.	Kombi- nation	x [m]	Knoten Nr.	My [kNm]	Vz [kN]	Nx [kN]
4	2	0.000	4	0.931	-0.289«	-3.068«
		3.603	5	-1.623	-1.129	-3.773
	17	0.000	4	2.281«	-1.054	-7.080
		3.603	5	-3.559«	-2.188«	-8.031«
5	1	0.000	5	-2.192	2.922	-4.442
		0.750	6	0.000«	2.922	-4.750
	2	0.000	5	-1.623	2.164«	-3.290«
		0.750	6	-	2.164«	-3.518
	17	0.000	5	-3.559«	4.746«	-6.839
		0.750	6	-	4.746«	-7.147«
6	2	0.000	7	-3.639	6.091	-2.164«
		0.950		2.010	5.802	-2.164
		1.460	4	0.931	-2.193	-2.164«
	17	0.000	7	-8.739«	14.616«	-4.746«
		0.950		4.961«	14.225	-4.746
		1.460	4	2.281«	-5.358«	-4.746«

Verformungen

Verformungen [cm] 10-fach vergrößert Extrema Nachweis GZG, Situation Charakteristisch



Verformungen [cm] 10-fach vergrößert Extrema Nachweis GZG, Situation Häufig

Verformungen [cm] 10-fach vergrößert

Extrema Nachweis GZG, Situation Quasi ständig

Extrema Nachweis GZG, Situation Charakteristisch

Stab	Knoten	max.uX	min.uX	max.uZ	min.uZ	max.phiy	min.phiy
Nr.	(Stab)	[cm]	[cm]	[cm]	[cm]	[cm/m]	[cm/m]
1	1	_	_	_	_	-0.039	-0.064
	2	-0.03	-0.04	_	_	-0.022	-0.037
2	2	-0.03	-0.04	_	_	-0.022	-0.037
	Stab	-0.01	-0.05	0.01	-0.04	0.032	-0.037
	3	-0.01	-0.01	-0.02	-0.04	-0.001	-0.002
3	3	-0.01	-0.01	-0.02	-0.04	-0.001	-0.002
	Stab	-0.01	-0.01	_	-0.04	0.007	-0.048
	7	-0.01	-0.01	_	_	0.007	0.005
4	4	-0.01	-0.01	-0.04	-0.06	0.005	0.005
	Stab	0.04	-0.01	_	-0.06	0.026	-0.038
	5	0.03	0.02	_	_	0.026	0.014
5	5	0.03	0.02	_	-	0.026	0.014
	6	_	_	_	-	0.053	0.032
6	7	-0.01	-0.01	_	_	0.007	0.005
	Stab	-0.01	-0.01	_	-0.06	0.060	0.005
	4	-0.01	-0.01	-0.04	-0.06	0.005	0.005

Extrema Nachweis GZG, Situation Häufig

Stab	Knoten	max.uX	min.uX	max.uZ	min.uZ	max.phiy	min.phiy
Nr.	(Stab)	[cm]	[cm]	[cm]	[cm]	[cm/m]	[cm/m]
1	1	_	_	_	_	-0.039	-0.043
	2	-0.03	-0.03	_	_	-0.022	-0.024
2	2	-0.03	-0.03	_	_	-0.022	-0.024
	Stab	-0.01	-0.03	_	-0.03	0.021	-0.024
	3	-0.01	-0.01	-0.02	-0.03	-0.002	-0.002
3	3	-0.01	-0.01	-0.02	-0.03	-0.002	-0.002
	Stab	-0.01	-0.01	_	-0.03	0.005	-0.031
	7	-0.01	-0.01	_	_	0.005	0.005
4	4	-0.01	-0.01	-0.04	-0.04	0.005	0.005
	Stab	0.02	-0.01	_	-0.04	0.017	-0.026
	5	0.02	0.02	_	_	0.017	0.014
5	5	0.02	0.02	_	_	0.017	0.014
	6	_	_	_	_	0.036	0.032

Stab Nr.	Knoten (Stab)	max.uX [cm]	min.uX [cm]	max.uZ [cm]	min.uZ [cm]	<pre>max.phiy [cm/m]</pre>	min.phiy [cm/m]
6	7	-0.01	-0.01	_	_	0.005	0.005
	Stab	-0.01	-0.01	_	-0.04	0.040	0.005
	4	-0.01	-0.01	-0.04	-0.04	0.005	0.005

Extrema Nachweis GZG, Situation Quasi ständig

Stab	Knoten	max.uX	min.uX	max.uZ	min.uZ	max.phiy	min.phiy
Nr.	(Stab)	[cm]	[cm]	[cm]	[cm]	[cm/m]	[cm/m]
1	1	_	_	_	-	-0.039	-0.039
	2	-0.03	-0.03	_	_	-0.022	-0.022
2	2	-0.03	-0.03	_	_	-0.022	-0.022
	Stab	-0.01	-0.03	_	-0.02	0.019	-0.022
	3	-0.01	-0.01	-0.02	-0.02	-0.002	-0.002
3	3	-0.01	-0.01	-0.02	-0.02	-0.002	-0.002
	Stab	-0.01	-0.01	_	-0.02	0.005	-0.028
	7	-0.01	-0.01	_	_	0.005	0.005
4	4	-0.01	-0.01	-0.04	-0.04	0.005	0.005
	Stab	0.02	-0.01	_	-0.04	0.014	-0.023
	5	0.02	0.02	_	-	0.014	0.014
5	5	0.02	0.02	_	-	0.014	0.014
	6	_	_	_	_	0.032	0.032
6	7	-0.01	-0.01	_	_	0.005	0.005
	Stab	-0.01	-0.01	_	-0.04	0.036	0.005
	4	-0.01	-0.01	-0.04	-0.04	0.005	0.005

Extrema Nachweis GZG

Knoten	max.uX	min.uX	max.uZ	min.uZ	max.phiy	min.phiy
Nr.	[cm]	[cm]	[cm]	[cm]	[cm/m]	[cm/m]
1	-	_	_	_	0.064	0.039
2	-0.03	-0.04	_	_	0.037	0.022
3	-0.01	-0.01	-0.02	-0.04	0.002	0.001
4	-0.01	-0.01	-0.04	-0.06	-0.005	-0.005
5	0.03	0.02	_	_	-0.014	-0.026
6	-	_	_	_	-0.032	-0.053
7	-0.01	-0.01	_	-	-0.005	-0.007

Nachweise-Stahl nach DIN EN 1993 (EC3)

Parameter und Annahmen

Plastische Nachweise nur bei Querschnittsklassen 1 und 2, sonst elastisch.

ky = Knicklängenbeiwert für das Knicken um die y-Achse (in Systemebene)

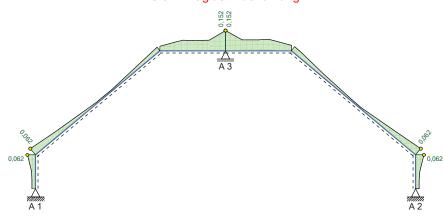
kz = Knicklängenbeiwert für das Knicken um die z-Achse (aus der Systemebene)

k = Verdrehbarkeit der Stabenden um die z-Achse (0.5 = starr, 1.0 = frei)

Die seitlichen Halterungen (Gabellagerungen) sind gleichmäßig über die Stablänge verteilt. Bei 2 Halterungen sind nur die Stabenden gehalten.

Biegdrillknicknachweise mit Stabendmomenten nach Th.1.Ordnung!

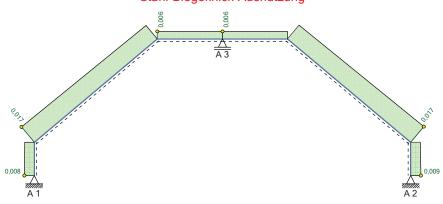
		Nachweis					ken Drillknicke		seitl.
Stab	plast.	BKNy	BKNz	BDKN	ky	kz	k	kw	Halter
1-6	Jа	Jа	Jа	Jа	1.00	1.00	1.00	1.00	2.


INGENIEURBÜRO	GRUMMEL	* *	BUCHWEIZENWEG	14	* *	49716	MEPPEN
Projekt 4010	T.eever			Pos	= 2	0.1	Seite 80

Schubbeulprüfung:

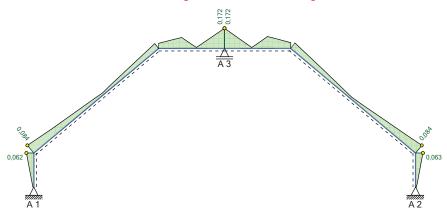
Stab	Gleichung	Zwischenwerte	Ausnutzung
1-6	6.22		0.115
	6.22		0.289

Traglast-Nachweise


Stahl-Traglast-Ausnutzung

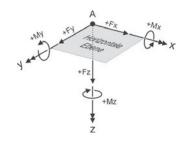
Stab	Komb.	Gleichung	Zwischenwerte	Ausnutzung
1	17	6.12	M-Beanspruchung (pl)	_
			-3.559 / 57.610	0.062
			Querschnittsklasse: 1	
2	17	6.12	M-Beanspruchung (pl)	
			-3.559 / 57.610	0.062
			Querschnittsklasse: 1	
3	17	6.12	M-Beanspruchung (pl)	
			-8.739 / 57.610	0.152
			Querschnittsklasse: 1	
4	17	6.12	M-Beanspruchung (pl)	
			-3.559 / 57.610	0.062
			Querschnittsklasse: 1	
5	17	6.12	M-Beanspruchung (pl)	
			-3.559 / 57.610	0.062
			Querschnittsklasse: 1	
6	17	6.12	M-Beanspruchung (pl)	
			-8.739 / 57.610	0.152
			Ouerschnittsklasse: 1	

Biegeknick-Nachweise


Stahl-Biegeknick-Ausnutzung

Stab	Komb.	Gleichung	Zwischenwerte	Ausnutzung
1	17	6.46	7.00 / 828.30 um y-Achse	0.008
		6.46	7.00 / 828.12 um z-Achse	0.008
2	17	6.46	7.94 / 699.91 um y-Achse	0.011
		6.46	7.94 / 465.34 um z-Achse	0.017
3	17	6.46	4.75 / 817.52 um y-Achse	0.006
		6.46	4.75 / 747.55 um z-Achse	0.006
4	17	6.46	8.03 / 699.91 um y-Achse	0.011
		6.46	8.03 / 465.34 um z-Achse	0.017
5	17	6.46	7.15 / 828.30 um y-Achse	0.009
		6.46	7.15 / 828.12 um z-Achse	0.009
6	17	6.46	4.75 / 817.52 um y-Achse	0.006
		6.46	4.75 / 747.55 um z-Achse	0.006

Biegedrillknick-Nachweise


Stahl-Biegedrillknick-Ausnutzung

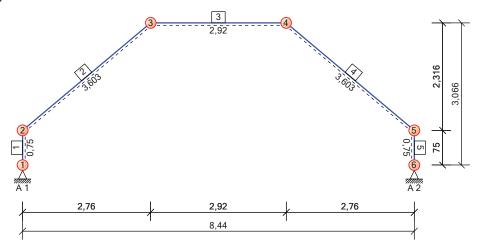
Stab	Komb.	Gleichung	Zwischenwerte	Ausnutzung
1	17	6.61	0.01 + 0.04 + 0.00	0.049
		6.62	0.01 + 0.05 + 0.00	0.062
2	17	6.61	0.01 + 0.03 + 0.00	0.039
		6.62	0.02 + 0.07 + 0.00	0.084
3	17	6.61	0.01 + 0.07 + 0.00	0.073
		6.62	0.01 + 0.17 + 0.00	0.172
4	17	6.61	0.01 + 0.03 + 0.00	0.039
		6.62	0.02 + 0.07 + 0.00	0.084
5	17	6.61	0.01 + 0.04 + 0.00	0.049
		6.62	0.01 + 0.05 + 0.00	0.063
6	17	6.61	0.01 + 0.07 + 0.00	0.073
		6.62	0.01 + 0.17 + 0.00	0.172

Weiterleitung der Einwirkungen (charakt.)

Die Kraftartrichtungen sind auf das globale Koordinatensystem bezogen. Dabei sind die Beträge der Kraftarten F in [kN] und M in [kNm].

INGENIEURBÜRO	GRUMMEL	* *	BUCHWEIZENWEG	14	* *	49716	MEPPEN
Projekt 4010	Leever			Pos	= 2	0.1	Seite 82

Lager	Kraft	Kategorie	Maximal	Minimal
1	Fx	G	-2.164	-2.164
		Q,S1	_	-0.360
		Q,W	_	-1.036
		Summe,k	-2.164	-3.560
	Fz	G	3.444	3.444
		Q,S1	0.458	_
		Q,W	1.341	_
		Summe,k	5.243	3.444
2	Fx	G	2.164	2.164
		Q,S1	0.360	_
		Q,W	1.036	_
		Summe,k	3.560	2.164
	Fz	G	3.518	3.518
		Q,S1	0.479	_
		Q,W	1.359	_
		Summe,k	5.356	3.518
3	Fz	G	11.926	11.926
		Q,S1	2.493	_
		Q,W	7.181	_
		Summe, k	21.600	11.926

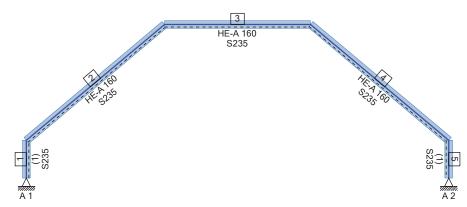

POS.2.02 STALEN SPANT

Programm: 088A, Vers: 01.04.014 12/2016, Lizenz: EC3, EC5

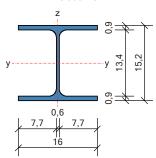
Grundlagen: DIN EN 1990/NA: 2010-12

DIN EN 1991-1-1/NA: 2010-12 DIN EN 1993-1-1/NA: 2010-12

System


Anmerkung

Material


			E-Modul	G-Modul	Alpha-T.	Wichte
 Nr.	Bezeichnung		[N/mm²]	$[N/mm^2]$	[1/K]	$[kN/m^3]$
1	Baustahl S235	(EN 10025-2)	210000	81000	0.000012	78.50

			Teilsic	herheiten	für	die	Systems	teifigke:	it
Nr.		P/T	A	AE		AB	char	frequ	perm
1	S235	1.00	1.00	1.00	1	.00	1.00	1.00	1.00

Querschnitte

(1) HE-A 160 Baustahl S235 (EN 10025-2) Stäbe 1-5

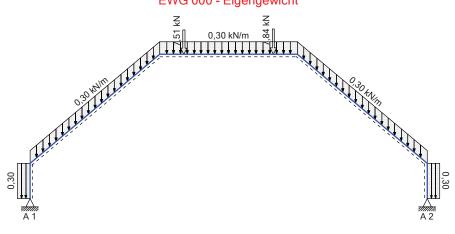
	Mat.	Winkel	A	Iy
Nr. Anz. Bezeichnung	[-]	[°]	[cm²]	$[cm^4]$
1 1 HE-A 160	1	0 00	38 77	1672 99

Knoten

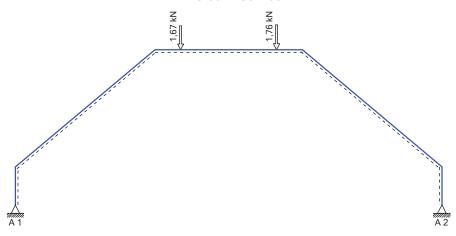
Nr.	x[m]	z[m]	Nr.	x[m]	z[m]	Nr.	x[m]	z[m]
1	0.000	0.000	3	2.760	3.066	5	8.440	0.750
2	0.000	0.750	4	5.680	3.066	6	8.440	0.000

Stäbe

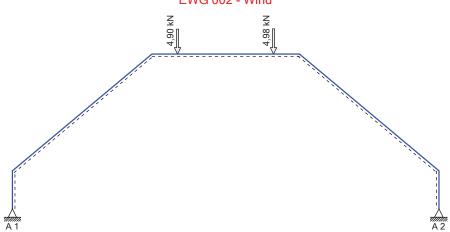
	Knot	en	Gele	nke	Fede	ern	Quer	sch.	Stab-Typ	Neigung	Länge
Nr.	(i)	(j)	(i)	(j)	(i)	(j)	(i)	(j)	[-]	[°]	[m]
1	1	2	_	-	-	_	1	1	Standard	90.00	0.750
2	2	3	_	_	-	-	1	1	Standard	40.00	3.603
3	3	4	_	_	_	_	1	1	Standard	0.00	2.920
4	4	5	_	_	_	_	1	1	Standard	-40.00	3.603
5	5	6	_	_	-	_	1	1	Standard	-90.00	0.750


Lager, Federn

		Winkel	vertikal	horizontal	Moment
Nr.	Knoten	[°]	[kN/cm]	[kN/cm]	[kNm/cm/m]
A1	1	_	starr	starr	frei
A2	6	_	starr	starr	frei


INGENIEURBÜRO GRUMMEL ** BUCHWEIZENWEG 14 ** 49716 MEPPEN Projekt 4010 Leever Pos 2.02 Seite 84

Einwirkungen


EWG 000 - Eigengewicht

EWG 001 - Schnee

EWG 002 - Wind

EWG Einwirkungsgruppe

- 0 Eigengewicht
- 1 Schnee
- 2 Wind

Kate-		KombBeiwerte			
gorie	Bezeichnung	KLED	Psi0	Psi1	Psi2
G	Ständige Einwirkungen	ständig	-	_	-
Q,S1	Schnee-,Eislasten: Höhe <= NN +1000 m	kurz	0.50	0.20	_
Q,W	Windlasten	kurz	0.60	0.20	_

		—Teilsich	erheit	sbeiwe	rte—
Nachweis	Situation	G,inf/sup	Q1	Qi	A
GZG	Charakteristisch	1.00/1.00	1.00	1.00	_
	Häufig	1.00/1.00	1.00	1.00	_
	Quasi ständig	1.00/1.00	1.00	1.00	-
STR	Ständig und vorübergehend	1.00/1.35	1.50	1.50	_

GZG = Gebrauchstauglichkeit

STR = Versagen oder übermäßige Verformungen des Tragwerks

Erläuterungen zu den Einwirkungen

FZ = Globale Einzellast in Z-Richtung

- q = Vertikale Streckenlast bezogen auf die Stablänge
- a = Abstand [m] vom Stabanfang (i), gemessen entlang der Stabachse.
- c = Lastlänge [m], gemessen entlang der Stabachse.

Linienlasten in Stabrichtung q[kN/m]

					а	C	Betra	ıg,k	Faktor
Einwirkung aus	Stäbe	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Eigengewicht.	1-5	α	G	0	_	_	0.30	0.30	_

Stab-Einzellasten FZ[kN]

Einwirkung aus	Stäbe	Тур	Kat.	EWG	a[m]	Betrag,k	Faktor
Pos.1.07 Aufl. 4 LF 1	3	FZ	G	0	0.510	7.51	_
Pos.1.07 Aufl. 4 LF 1	3	FZ	Q,S1	1	0.510	1.67	_
Pos.1.07 Aufl. 4 LF 1	3	FZ	Q,W	2	0.510	4.90	_
Pos.1.08 Aufl. 4 LF 1	3	FZ	G	0	2.410	7.84	_
Pos.1.08 Aufl. 4 LF 1	3	FZ	Q,S1	1	2.410	1.76	-
Pos.1.08 Aufl. 4 LF 1	3	FZ	Q,W	2	2.410	4.98	_

Lastfälle

Nr.	Bezeichnung		EWG
1	Eigengewicht	+ Schnee	0,1
2	Eigengewicht	+ Wind	0,2
3	Eigengewicht	+ Schnee + Wind	0-2

Schnittgrößen

Berech	nnungspa	rameter

Theorie:	1.Ordnung
Schubverformungen:	Ja
Stabteilung:	1/4
Autom. Kombinatorik:	Ja
Nachweise:	STR = Versagen oder übermäßige Verformungen des Tragwerks
	GZG = Gebrauchstauglichkeit
Situationen:	P/T = Ständig und vorübergehend A = Außergewöhnlich
	AE = Erdbeben
	char = Charakteristisch
	frequ = Häufig

Berechnungsparameter

perm = Quasi ständig

Besonderheiten: Teilsicherheitsbeiwerte gemäß DIN EN 1990 Tab.Al.

2(A) Anmerk.1 für den Nachweis EQU.

Außergewöhnliche Bemessungssituationen mit Psi2 für

die vorherrschende veränderliche Einwirkung.

Kombinationen

KNr.	LF	BemSituation	Kombination	KLED
1	1	STR, P/T	Gsup	ständig
2			Ginf	ständig
3			Gsup + Q,S1	kurz
8	2	STR, P/T	Ginf + Q,W	kurz
13	3	STR, P/T	Gsup + Q,S1 + (Q,W)	kurz
17			Gsup + Q , W + (Q , $S1$)	kurz
19	1	GZG, char	G	ständig
20			G + Q,S1	kurz
21	1	GZG, frequ	G	ständig
22			G + Q,S1	kurz
23	1	GZG, perm	G	ständig
26	2	GZG, char	G + Q,W	kurz
28	2	GZG, frequ	G + Q,W	kurz
33 35	3	GZG, char	G + Q,S1 + (Q,W) G + Q,W + (Q,S1)	kurz kurz

Erläuterungen

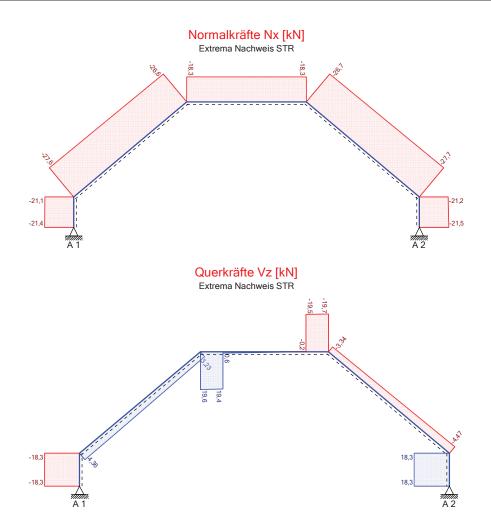
KLED : Klasse der Lasteinwirkungsdauer

Nachweise:

GZG : Gebrauchstauglichkeit

STR : Versagen oder übermäßige Verformungen des Tragwerks

Bemessungssituationen:


char : Charakteristisch

frequ : Häufig

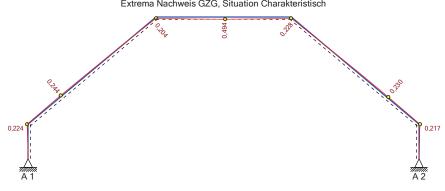
P/T : Ständig und vorübergehend

perm : Quasi ständig

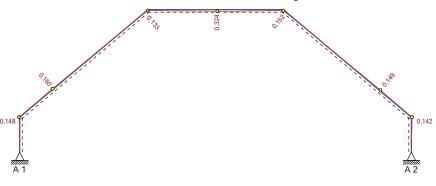
Extrema Nachweis STR 13,7 A 1

Extrema Nachweis STR

Die Markierungen («) kennzeichnen jeweils die Extremwerte (Max/Min) an den Stabenden und, falls vorhanden, im Stabverlauf.

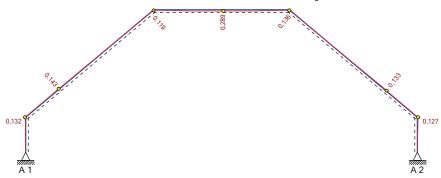

Stab	Kombi-	x	Knoten	Му	Vz	Nx
Nr.	nation	[m]	Nr.	[kNm]	[kN]	[kN]
1	1	0.000	1	0.000«	-10.525	-12.700
		0.750	2	-7.894	-10.525	-12.391
	2	0.000	1	_	-7.796«	-9.407
		0.750	2	-5.847	-7.796«	-9.179«
	17	0.000	1	_	-18.318«	-21.375«
		0.750	2	-13.738«	-18.318«	-21.067
		0.750	2	-13.730%	-10.510%	-21.007
2	2	0.000	2	-5.847	2.020	-11.872
4	2					
		3.603	3	-0.082	1.180«	-11.167«
	8	0.000	2	-10.827	3.418	-21.713
		3.603	3	-0.026«	2.578	-21.008
	17	0.000	2	-13.738«	4.364«	-27.573«
		3.603	3	-0.059	3.230	-26.622
3	2	0.000	3	-0.082	8.082	-7.796«
	_	1.880	-	4.286	_	-7.796
			4	0.123	0 157	-7.796«
		2.920	4	0.143	-8.157	-1.196«

INGENIEURBÜRO	GRUMMEL *	*	BUCHWEIZENWEG	14	* *	49716	6 MEPPEN
Projekt 4010	Leever			Pos	s 2.	.02	Seite 88


Stab Nr.	Kombi- nation	x [m]	Knoten Nr.	My [kNm]	Vz [kN]	Nx [kN]
	3	0.000	3	-0.120«	13.468	-12.830
		2.007 2.920	4	7.156 0.240	- -13.599	-12.830 -12.830
	17	0.000 2.057	3	-0.059 10.368«	19.586« -	-18.318« -18.318
		2.920	4	0.334«	-19.729«	-18.318«
4	2	0.000	4	0.123	-1.237«	-11.215«
		3.603	5	-5.847	-2.077	-11.920
	17	0.000	4	0.334«	-3.339	-26.713
		3.603	5	-13.738«	-4.473«	-27.665«
5	1	0.000	5	-7.894	10.525	-12.492
		0.750	6	0.000«	10.525	-12.800
	2	0.000	5	-5.847	7.796«	-9.253«
		0.750	6	-	7.796«	-9.481
	17	0.000	5	-13.738«	18.318«	-21.209
		0.750	6	-	18.318«	-21.517«

Verformungen

Verformungen [cm] 10-fach vergrößert Extrema Nachweis GZG, Situation Charakteristisch



Verformungen [cm] 10-fach vergrößert Extrema Nachweis GZG, Situation Häufig

Verformungen [cm] 10-fach vergrößert

Extrema Nachweis GZG, Situation Quasi ständig

Extrema Nachweis GZG, Situation Charakteristisch

Stab Nr.	Knoten (Stab)	max.uX [cm]	min.uX [cm]	max.uZ [cm]	min.uZ [cm]	<pre>max.phiy [cm/m]</pre>	min.phiy [cm/m]
1	1	_	_	_	_	-0.195	-0.329
	2	-0.13	-0.22	-	-	-0.132	-0.225
2	2	-0.13	-0.22	_	_	-0.132	-0.225
	Stab	-0.01	-0.29	0.07	-0.27	0.251	-0.225
	3	-0.01	-0.01	-0.16	-0.27	0.251	0.146
3	3	-0.01	-0.01	-0.16	-0.27	0.251	0.146
	Stab	-0.01	-0.01	-0.16	-0.49	0.251	-0.246
	4	-0.01	-0.01	-0.17	-0.29	-0.142	-0.246
4	4	-0.01	-0.01	-0.17	-0.29	-0.142	-0.246
	Stab	0.28	-0.01	0.07	-0.29	0.215	-0.247
	5	0.22	0.13	-	-	0.215	0.125
5	5	0.22	0.13	-	_	0.215	0.125
	6	_	_	_	_	0.319	0.188

Extrema Nachweis GZG, Situation Häufig

Stab	Knoten	max.uX	min.uX	max.uZ	min.uZ	max.phiy	min.phiy
Nr.	(Stab)	[cm]	[cm]	[cm]	[cm]	[cm/m]	[cm/m]
1	1	_	_	_	-	-0.195	-0.218
	2	-0.13	-0.15	-	-	-0.132	-0.148
_							
2	2	-0.13	-0.15	_	-	-0.132	-0.148
	Stab	-0.01	-0.19	0.05	-0.18	0.164	-0.148
	3	-0.01	-0.01	-0.16	-0.18	0.164	0.146
3	3	-0.01	-0.01	-0.16	-0.18	0.164	0.146
5	_						
	Stab	-0.01	-0.01	-0.16	-0.32	0.164	-0.160
	4	-0.01	-0.01	-0.17	-0.19	-0.142	-0.160
4	4	-0.01	-0.01	-0.17	-0.19	-0.142	-0.160
	Stab	0.18	-0.01	0.04	-0.19	0.141	-0.160
	5	0.14	0.13	_	_	0.141	0.125
5	5	0.14	0.13	_	_	0.141	0.125
	6	-	-	_	-	0.210	0.188

Extrema Nachweis GZG, Situation Quasi ständig

Stab	Knoten	max.uX	min.uX	max.uZ	min.uZ	max.phiy	min.phiy
Nr.	(Stab)	[cm]	[cm]	[cm]	[cm]	[cm/m]	[cm/m]
1	1	-	_	-	_	-0.195	-0.195
	2	-0.13	-0.13	-	-	-0.132	-0.132
2	2	-0.13	-0.13	-	_	-0.132	-0.132
	Stab	-0.01	-0.17	0.04	-0.16	0.146	-0.132
	3	-0.01	-0.01	-0.16	-0.16	0.146	0.146
3	3	-0.01	-0.01	-0.16	-0.16	0.146	0.146
	Stab	-0.01	-0.01	-0.16	-0.29	0.146	-0.142
	4	-0.01	-0.01	-0.17	-0.17	-0.142	-0.142
4	4	-0.01	-0.01	-0.17	-0.17	-0.142	-0.142
	Stab	0.16	-0.01	0.04	-0.17	0.125	-0.143
	5	0.13	0.13	-	-	0.125	0.125
5	5	0.13	0.13	_	_	0.125	0.125
	6	_	_	_	_	0.188	0.188

Extrema Nachweis GZG

Knoten	max.uX	min.uX	max.uZ	min.uZ	max.phiy	min.phiy
Nr.	[cm]	[cm]	[cm]	[cm]	[cm/m]	[cm/m]
1	-	-	_	_	0.329	0.195
2	-0.13	-0.22	_	_	0.225	0.132
3	-0.01	-0.01	-0.16	-0.27	-0.146	-0.251
4	-0.01	-0.01	-0.17	-0.29	0.246	0.142
5	0.22	0.13	_	_	-0.125	-0.215
6	_	_	_	_	-0.188	-0.319

Nachweise-Stahl nach DIN EN 1993 (EC3)

Parameter und Annahmen

Plastische Nachweise nur bei Querschnittsklassen 1 und 2, sonst elastisch.

ky = Knicklängenbeiwert für das Knicken um die y-Achse (in Systemebene)

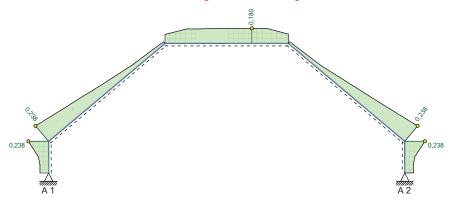
kz = Knicklängenbeiwert für das Knicken um die z-Achse (aus der Systemebene)

k = Verdrehbarkeit der Stabenden um die z-Achse (0.5 = starr, 1.0 = frei)

kw = Verwölbbarkeit der Stabenden (0.5 = starr, 1.0 = frei)

Die seitlichen Halterungen (Gabellagerungen) sind gleichmäßig über die Stablänge verteilt. Bei 2 Halterungen sind nur die Stabenden gehalten.

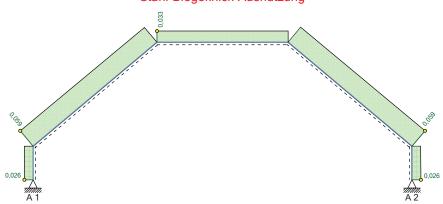
Biegdrillknicknachweise mit Stabendmomenten nach Th.1.Ordnung!


	Nachweis			Knic	Knicken		Drillknicken		
Stab	plast.	BKNy	BKNz	BDKN	ky	kz	k	kw	Halter
1-5	Ja	Ja	Ja	Ja	1.00	1.00	1.00	1.00	2

Schubbeulprüfung:

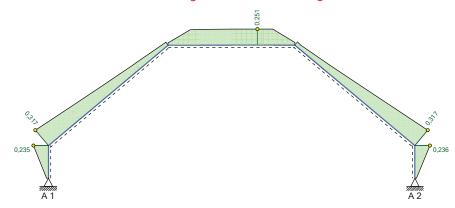
Stab	Gleichung	Zwischenwerte	Ausnutzung
1-5	6.22		0.115
	6.22		0.289

Traglast-Nachweise


Stahl-Traglast-Ausnutzung

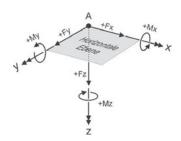
Stab	Komb.	Gleichung	Zwischenwerte	Ausnutzung
1	17	6.12	M-Beanspruchung (pl)	
			-13.738 / 57.610	0.238
			Querschnittsklasse: 1	
2	17	6.12	M-Beanspruchung (pl)	
			-13.738 / 57.610	0.238
			Querschnittsklasse: 1	
3	17	6.12	M-Beanspruchung (pl)	
			10.368 / 57.610	0.180
			Querschnittsklasse: 1	
4	17	6.12	M-Beanspruchung (pl)	
			-13.738 / 57.610	0.238
			Querschnittsklasse: 1	
5	17	6.12	M-Beanspruchung (pl)	
			-13.738 / 57.610	0.238
			Querschnittsklasse: 1	

Biegeknick-Nachweise


Stahl-Biegeknick-Ausnutzung

Stab	Komb.	Gleichung	Zwischenwerte	Ausnutzung
1	17	6.46	21.37 / 828.30 um y-Achse	0.026
		6.46	21.37 / 828.12 um z-Achse	0.026
2	17	6.46	27.57 / 699.91 um y-Achse	0.039
		6.46	27.57 / 465.34 um z-Achse	0.059
3	17	6.46	18.32 / 742.03 um y-Achse	0.025
		6.46	18.32 / 558.70 um z-Achse	0.033
4	17	6.46	27.67 / 699.91 um y-Achse	0.040
		6.46	27.67 / 465.34 um z-Achse	0.059
5	17	6.46	21.52 / 828.30 um y-Achse	0.026
		6.46	21.52 / 828.12 um z-Achse	0.026

Biegedrillknick-Nachweise


Stahl-Biegedrillknick-Ausnutzung

Stab	Komb.	Gleichung	Zwischenwerte	Ausnutzung
1	17	6.61	0.03 + 0.16 + 0.00	0.183
		6.62	0.03 + 0.21 + 0.00	0.235
2	17	6.61	0.04 + 0.15 + 0.00	0.192
		6.62	0.06 + 0.26 + 0.00	0.317
3	17	6.61	0.02 + 0.21 + 0.00	0.234
		6.62	0.03 + 0.22 + 0.00	0.251
4	17	6.61	0.04 + 0.15 + 0.00	0.189
		6.62	0.06 + 0.26 + 0.00	0.317
5	17	6.61	0.03 + 0.16 + 0.00	0.183
		6.62	0.03 + 0.21 + 0.00	0.236

Weiterleitung der Einwirkungen (charakt.)

Die Kraftartrichtungen sind auf das globale Koordinatensystem bezogen. Dabei sind die Beträge der Kraftarten F in [kN] und M in [kNm].

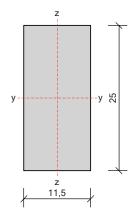
Lager	Kraft	Kategorie	Maximal	Minimal
1	Fx	G	-7.796	-7.796
		Q,S1	_	-1.537
		Q,W	-	-4.427
		Summe,k	-7.796	-13.760
	Fz	G	9.407	9.407
		Q,S1	1.705	_
		Q,W	4.931	_
		Summe,k	16.043	9.407
2	Fx	G	7.796	7.796
		Q,S1	1.537	_
		Q,W	4.427	_
		Summe,k	13.760	7.796

INGENIEURBÜRO	GRUMMEL	* *	BUCHWEIZENWEG	14	* *	49716	MEPPEN
Projekt 4010	Leever			Po	s 2.	0.2	Seite 93

Lager	Kraft	Kategorie	Maximal	Minimal
	Fz	G	9.481	9.481
		Q,S1	1.725	_
		Q,W	4.949	_
		Summe,k	16.155	9.481

POS.2.03 STB-BALK op MW (Constructief)

Programm: 071A, Vers: 01.03.018 10/2013


Baustoffe

Betonbez	Größtkorn	Herstellart	— Ecm —
C20/25	16 mm	Ortbeton	30000 N/mm ²

Betonstahl: B500A

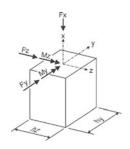
Überdeckungen		Expositions-/	c.min	nin delta.c		
Ort	Seite	Feuchteklassen	[mm]	[mm]	[mm]	
überall	umlaufend	XC1, WO	15	10	25	

Querschnitt: Balken b/h = 11,5/25 cm

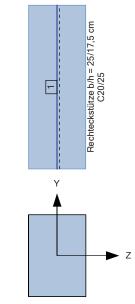
Grenzzustand der Tragfähigkeit

Längsbewehrung:

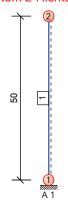
		- As -
Ort	Seite Bewehrung	[cm²]
Feld 1	1 oben 1 Ø 12	1.13
	unten 1 Ø 12	1.13


POS.2.04 BETONPIJLAR

Programm: 072K, Vers: 01.02.003 12/2017


Grundlagen: DIN EN 1990/NA: 2010-12

DIN EN 1991-1-1/NA: 2010-12 DIN EN 1992-1-1/NA: 2011-01


System:

Querschnitte z-Richtung

System z-Richtung

Gesamthöhe = 0.50 m, Bemessung 1-achsig

Erläuterung: Cd/Cw = Dreh-/Wegfedersteifigkeit in (kNm/cm/m) bzw. (kN/cm)

]	Höhen		 Federwer	rte —
	[m]	Auflagerbezeichnung	Cw	Cd
	0.50	Kragarm	_	
	0.00	Einspannung unten	_	_

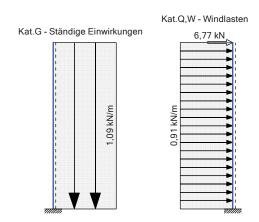
Imperfektionen

	z-Ric	htung ———		y-Richtung ———
Bereich [m]	m	Imperfektion	m	Imperfektion
0.00 - 0.50	1 phi = 1/200	Schiefstellung	- =	

Kriechen:

Die Dauer der Belastungen wird mit einer effektiven Kriechzahl Phi_ef berücksichtigt. Zusammen mit der Bemessungslast ergibt diese eine Kriechverformung die der 'quasi-ständigen' Beanspruchung entspricht. Die Endkriechzahlen werden aus folgenden Parametern ermittelt:

Kriechen:


Belastungsbegin nach 28 Tagen, relative Luftfeuchte RH = 50%, Zementtyp N

Das Referenz-Biegemoment aus 'quasi-ständig' : MOEpq** = 0.00 [kNm]

		M0Ed**	Phi	Phi_ef	Abmin.
KNr.	Bereich	[kNm]	[-]	[-]	[%]
1	0.00 - 0.50 m	0.00	3.19	3.19	_
2	0.00 - 0.50 m	0.00	3.19	3.19	_
3	0.00 - 0.50 m	5.25	3.19	0.00	100.0
4	0.00 - 0.50 m	5.25	3.19	0.00	100.0
5	0.00 - 0.50 m	0.00	3.19	3.19	_
6	0.00 - 0.50 m	3.50	3.19	0.00	100.0
7	0.00 - 0.50 m	0.00	3.19	3.19	_
8	0.00 - 0.50 m	0.00	3.19	3.19	_

^{** =} Biegemomente nach Theorie 2. Ordnung (linear)

Einwirkungen

Erläuterungen zu den Einwirkungen

Fz = Lokale Einzellast in z-Richtung

qx = Lokale Streckenlast in x-Richtung

qz = Lokale Streckenlast in z-Richtung

a = vertikaler Abstand [m] von UK-Wand

c = vertikale Lastlänge [m]

Streckeneinwirkungen [kN/m]

									а	C	Betra	g,k	Abmin.
Einwirkung	aus					Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Wind (0,76	kN/m²	*	0,80	*	1,	qz	Q,W	1	0.00	0.50	0.91	0.91	_
50 m)													
Eigengewich	ıt					qx	G	1	0.00	0.50	-1.09	-1.09	-

Einzeleinwirkungen [kN]

Einwirkung aus	Typ Kat.	EWG	a[m]	Betrag,k	Abmin.
Pos.1.10 Aufl. 2 LF 1	Fz Q,W	1	0.50	6.77	_

Kategorien und Kombinationsbeiwerte

Kate-		Komk	oBeiw	verte	feldw.
gorie	Bezeichnung	Psi0	Psi1	Psi2	Ansatz
G	Ständige Einwirkungen	-	-	-	_
Q,W	Windlasten	0.60	0.20	_	nein

		— Tei	lsiche	rheits	beiwert	te —
Nachweis	Situation	G,inf	G,sup	Q1	Qi	A
STR	Ständig und vorübergehend	1.00	1.35	1.50	1.50	_
GZG	Quasi ständig	1.00	1.00	1.00	1.00	_
	Charakteristisch	1.00	1.00	1.00	1.00	_

STR = Versagen oder übermäßige Verformungen des Tragwerks GZG = Gebrauchstauglichkeit

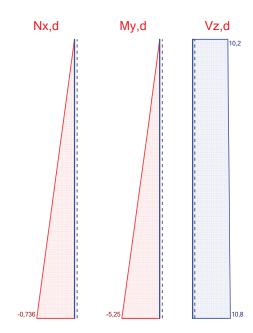
Kombinationen

KNr.	LF	BemSituation	Kombination
1	1	STR, P/T	Gsup
2			Ginf
3			Gsup + Q,W
4			Ginf + Q,W
5	1	GZG, char	G
6			G + Q,W
7	1	GZG, perm	G
8			G + (Q, W)

Nachweise:

GZG : Gebrauchstauglichkeit

STR : Versagen oder übermäßige Verformungen des Tragwerks


Bemessungssituationen:

char : Charakteristisch

P/T : Ständig und vorübergehend

perm : Quasi ständig

Schnittgrößen

Schnittgrößen (Design)

		—— min ———			— max ——	
h	Nx	My	Vz	Nx	My	Vz
[m]	[kN]	[kNm]	[kN]	[kN]	[kNm]	[kN]
0.50	_	_	_	-	_	10.16
0.50	_	_	_	-	_	_
0.45	-0.07	-0.51	_	-0.05	_	10.22
0.40	-0.15	-1.02	_	-0.11	_	10.29

		— min ——			— max ——	
h	Nx	My	Vz	Nx	My	Vz
[m]	[kN]	[kNm]	[kN]	[kN]	[kNm]	[kN]
0.35	-0.22	-1.54	_	-0.16	_	10.36
0.30	-0.29	-2.06	_	-0.22	_	10.43
0.25	-0.37	-2.58	_	-0.27	_	10.50
0.20	-0.44	-3.11	_	-0.33	_	10.57
0.15	-0.52	-3.64	_	-0.38	_	10.64
0.10	-0.59	-4.17	_	-0.44	_	10.70
0.05	-0.66	-4.71	_	-0.49	_	10.77
0.00	-0.74	-5.25	_	-0.55	_	10.84

Auflagerkräfte lokal (Design)

	min			max		
	Az	Ax	My	Az	Ax	My
Lager	[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]
2	-	_	-	_	_	_
1	0.00	0.55	-5.25	10.84	0.74	0.00

WZ

Verformumgen (charak.)

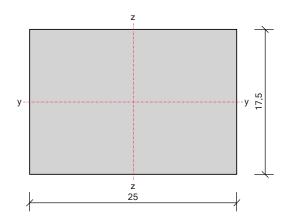
	m	in ———	max	
h	WZ	WX	WZ	XW
[m]	[cm]	[cm]	[cm]	[cm]
0.50	_	-	0.011	_
0.50	_	-	0.011	_
0.45	_	-	0.010	_
0.40	_	-	0.008	_
0.35	_	-	0.006	_
0.30	_	-	0.005	_
0.25	_	-	0.004	_
0.20	_	-	0.002	_
0.15	-	_	0.001	-
0.10	-	_	0.001	-
0.05	-	-	_	_
0.00	-	-	_	-

Bemessung

Nachweisparameter:

- Allgemeines Berechnungsverfahren nach DIN EN 1992-1-1 Abs. 5.8.6
 - Theorie II. Ordnung (nichtlinear)
 - Kriechauswirkungen werden berücksichtigt
 - Ansatz der effektiven Steifigkeiten: Spannungs-Dehnungs-Linie
- Bemessungsdiagramm: Parabel-Rechteck-Diagramm
- Lastangriffspunkt: Querschnittschwerpunkt
- Bewehrungsanordnung: symmetrisch
- Bügel: Stabdurchmesser 6 mm

Baustoffe

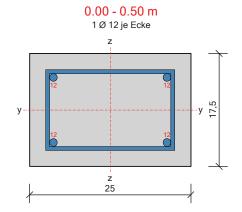

Betonbez Größtkorn Herstellart — Ecm — C20/25 16 mm Transportbeton 30000 N/mm²

Betonstahl: B500A

Überdeckungen (der biegebeanspruchten Bewehrung)

		Expositions-/	c.min	delta.c	CV
Ort	Seite	Feuchteklassen	[mm]	[mm]	[mm]
überall	allseitig	XC1, WO	15	10	25

Querschnitt: Rechteckstütze b/h = 25/17,5 cm


Grenzzustand der Tragfähigkeit

Längsbewehrung, Bemessungsschnittgrößen

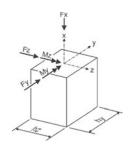
0.00 - 0.	50 m Ecken	4	0.00	-0.55	-5.25	-
Ort	Seite	[-]	[m]	[kN]	[kNm]	[kNm]
		KNr	h	Nx	My	Mz

Längsbewehrung:

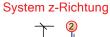
		As	
Ort	Seite Bewehrung	[cm²]	Ausnutzung
0.00 - 0.	50 m Ecken 1 Ø 12 je Ecke	4.52	0.451 < 1

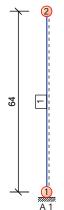
Querkraftbewehrung:

0.00 - 0.50 m	0.00/ 0.00	R188 A	3.76/ 3.76
Bereich	[cm²/m]	Bezeichnung	[cm²/m]
	y/z-Richt.	Mattenbügel	y/z-Richt.
	— erf.asw —		— vhd.asw —


POS.2.05 BETONPIJLAR

Programm: 072K, Vers: 01.02.003 12/2017


Grundlagen: DIN EN 1990/NA: 2010-12


DIN EN 1991-1-1/NA: 2010-12 DIN EN 1992-1-1/NA: 2011-01

System:

Querschnitte z-Richtung Rechteckstütze b/h = 25/17,5 cm C20/25

17,5

Gesamthöhe = 0.64 m, Bemessung 1-achsig

Erläuterung: Cd/Cw = Dreh-/Wegfedersteifigkeit in (kNm/cm/m) bzw. (kN/cm)

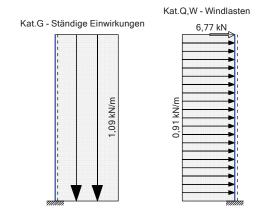
Höhe	Shen — Fede:		erte —
[m	Auflagerbezeichnung	Cw	Cd
0.6	54 Kragarm	_	_
0.0	00 Einspannung unten	-	_

Imperfektionen

	z-Ric	htung ———		y-Richtung ———
Bereich [m]	m	Imperfektion	m	Imperfektion
0.00 - 0.64	1 phi = 1/200	Schiefstellung	- =	

Kriechen:

Die Dauer der Belastungen wird mit einer effektiven Kriechzahl Phi_ef berücksichtigt. Zusammen mit der Bemessungslast ergibt diese eine Kriechverformung die der 'quasi-ständigen' Beanspruchung entspricht. Die Endkriechzahlen werden aus folgenden Parametern ermittelt: Belastungsbegin nach 28 Tagen, relative Luftfeuchte RH = 50%, Zementtyp N


Das Referenz-Biegemoment aus 'quasi-ständig': M0Epq** = 0.00 [kNm]

M0Ed** Phi Phi ef Ahmin

		MUEd**	Phi	Phi_ef	Abmin.
KNr.	Bereich	[kNm]	[-]	[-]	[%]
1	0.00 - 0.64 m	0.00	3.19	3.19	_
2	0.00 - 0.64 m	4.52	3.19	0.00	100.0
3	0.00 - 0.64 m	0.00	3.19	3.19	_
4	0.00 - 0.64 m	0.00	3.19	3.19	_
5	0.00 - 0.64 m	0.00	3.19	3.19	-
6	0.00 - 0.64 m	0.00	3.19	3.19	-
7	0.00 - 0.64 m	6.78	3.19	0.00	100.0
8	0.00 - 0.64 m	6.78	3.19	0.00	100.0

^{** =} Biegemomente nach Theorie 2. Ordnung (linear)

Einwirkungen

Erläuterungen zu den Einwirkungen

Fz = Lokale Einzellast in z-Richtung
qx = Lokale Streckenlast in x-Richtung
qz = Lokale Streckenlast in z-Richtung

a = vertikaler Abstand [m] von UK-Wand

c = vertikale Lastlänge [m]

Streckeneinwirkungen [kN/m]

			а	C	Betra	g,k	Abmin.
Einwirkung aus	Typ Kat.	EWG	[m]	[m]	li.	re.	Alpha
Wind $(0.76 \text{ kN/m}^2 * 0.80 * 1.$	qz Q,W	1	0.00	0.64	0.91	0.91	_
50 m)							
Eigengewicht	qx G	1	0.00	0.64	-1.09	-1.09	-

Einzeleinwirkungen [kN]

Einwirkung aus	Typ Kat	. EWG	a[m]	Betrag,k	Abmin.
Pos.1.10 Aufl. 2 LF 1	Fz Q,W	1	0.64	6.77	_

Kategorien und Kombinationsbeiwerte

Kate-		Komb	Belw	erte	relaw.
gorie	Bezeichnung	Psi0	Psi1	Psi2	Ansatz
G	Ständige Einwirkungen	-	-	-	
Q,W	Windlasten	0.60	0.20	_	nein

		— Tei	lsiche	rheits	beiwer	te —
Nachweis	Situation	G,inf	G,sup	Q1	Qi	A
STR	Ständig und vorübergehend	1.00	1.35	1.50	1.50	_
GZG	Quasi ständig	1.00	1.00	1.00	1.00	_
	Charakteristisch	1.00	1.00	1.00	1.00	_

STR = Versagen oder übermäßige Verformungen des Tragwerks GZG = Gebrauchstauglichkeit

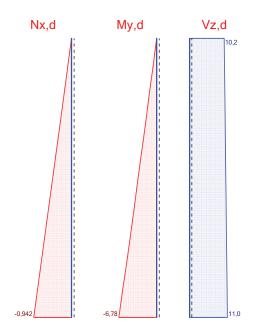
Kombinationen

KNr.	LF	BemSituation	Kombination
1	1	STR, P/T	Gsup
2			Ginf
3			Gsup + Q,W
4			Ginf + Q,W
5	1	GZG, char	G
6			G + Q,W

KNr.	$_{ m LF}$	BemSituation	Kombination
7	1	GZG, perm	G
8			G + (Q, W)

Nachweise:

GZG : Gebrauchstauglichkeit


STR : Versagen oder übermäßige Verformungen des Tragwerks

Bemessungssituationen: char : Charakteristisch

P/T : Ständig und vorübergehend

perm : Quasi ständig

Schnittgrößen

Schnittgrößen (Design)

		— min ——			— max ——	
h	Nx	My	Vz	Nx	My	Vz
[m]	[kN]	[kNm]	[kN]	[kN]	[kNm]	[kN]
0.64	_	_	_	_	_	10.16
0.64	_	_	_	-	_	_
0.58	-0.09	-0.65	_	-0.07	_	10.24
0.51	-0.19	-1.31	_	-0.14	_	10.33
0.45	-0.28	-1.98	_	-0.21	_	10.42
0.38	-0.38	-2.65	_	-0.28	_	10.51
0.32	-0.47	-3.32	_	-0.35	_	10.60
0.26	-0.57	-4.00	_	-0.42	_	10.68
0.19	-0.66	-4.69	_	-0.49	_	10.77
0.13	-0.75	-5.38	_	-0.56	_	10.86
0.06	-0.85	-6.08	_	-0.63	_	10.95
0.00	-0.94	-6.78	-	-0.70	-	11.03

Auflagerkräfte lokal (Design)

		— min ——			— max ——	
	Az	Ax	My	Az	Ax	My
Lager	[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]
2	-	-	-	-	_	_
1	0.00	0.70	-6.78	11.03	0.94	0.00

Verformumgen (charak.)

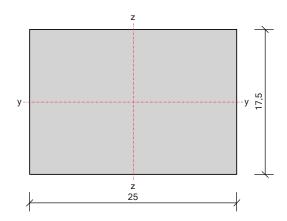
	m	in ———	ma	x
h	WZ	WX	WZ	WX
[m]	[cm]	[cm]	[cm]	[cm]
0.64	-	_	0.077	_
0.64	-	_	0.077	_
0.58	_	_	0.065	_
0.51	_	_	0.054	_
0.45	_	_	0.043	_
0.38	-	_	0.033	_
0.32	-	_	0.024	_
0.26	_	_	0.016	_
0.19	_	_	0.009	_
0.13	_	_	0.004	_
0.06	_	-	0.001	_
0.00	_	_	_	_

Bemessung

Nachweisparameter:

- Allgemeines Berechnungsverfahren nach DIN EN 1992-1-1 Abs. 5.8.6
 - Theorie II. Ordnung (nichtlinear)
 - Kriechauswirkungen werden berücksichtigt
 - Ansatz der effektiven Steifigkeiten: Spannungs-Dehnungs-Linie
- Bemessungsdiagramm: Parabel-Rechteck-Diagramm
- Lastangriffspunkt: Querschnittschwerpunkt
- Bewehrungsanordnung: symmetrisch
- Bügel: Stabdurchmesser 6 mm

Baustoffe

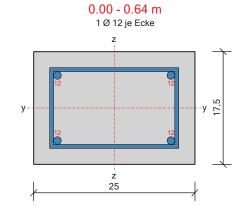

Betonbez	Größtkorn	Herstellart	— Ест —
C20/25	16 mm	Transportbeton	30000 N/mm ²

Betonstahl: B500A

Überdeckungen (der biegebeanspruchten Bewehrung)

		Expositions-/	c.min	delta.c	CV
Ort	Seite	Feuchteklassen	[mm]	[mm]	[mm]
überall	allseitig	XC1, WO	15	10	25

Querschnitt: Rechteckstütze b/h = 25/17,5 cm


Grenzzustand der Tragfähigkeit

Längsbewehrung, Bemessungsschnittgrößen

0.00 - 0.	.64 m Ecken	4	0.00	-0.70	-6.78	_
Ort	Seite	[-]	[m]	[kN]	[kNm]	[kNm]
		KNr	h	Nx	My	Mz

Längsbewehrung:

		Ab	
Ort	Seite Bewehrung	[cm²]	Ausnutzung
0.00 - 0.64	m Ecken 1 Ø 12 je Ecke	4.52	0.585 < 1

Querkraftbewehrung:

0.00 - 0.64 m	0.00/ 0.00	R188 A	3.76/ 3.76
Bereich	$[cm^2/m]$	Bezeichnung	$[cm^2/m]$
	y/z-Richt.	Mattenbügel	y/z-Richt.
	— erf.asw —		- vhd.asw $-$

POS.3.01 VERDIEPINGSVLOER

Programm: 050R, Vers: 01.00.033 10/2012

Bemessungsvorgaben:

Baustoffe: Normalbeton C 20/25 BSt 500S(A)+BSt 500M(A)

Größtkorn des Zuschlags dg = 32.0 mm

Expositionsklassenauswahl	mit Betondeckung:	c.min d	elta.c	gew.c
Ort Expositionsklassen		[mm]	[mm]	[mm]
oben : XC1		10	15	25
unten : XC1		10	15	25
Erläuterungen: VC1 Trocken oder et	ändig nagg			

Erläuterungen: XC1 Trocken oder ständig nass

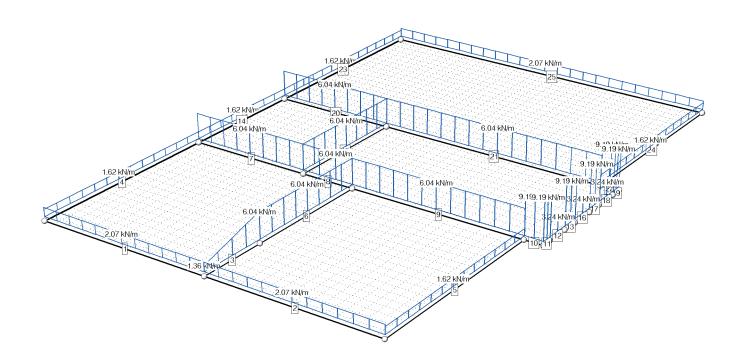
Plattendicke: h = 20.0 cm

Einwirkungen:

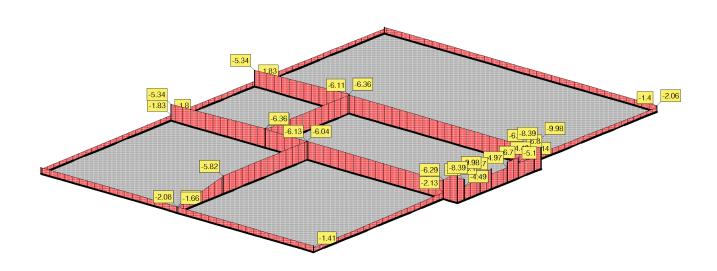
q = Flächenlast [kN/m²], qz = Linienlast [kN/m] Lasten: F = Einzellast [kN]

Einwirkung aus	Last	Kat.	Wert,k	Alpha
Betondecke (25.00 $kN/m^3 * 0.20 m$)	qz	G	5.00	_
Ausbaulasten	qz	G	1.50	_
Trennwandzuschlag (3<=g<=5 kN/m)	qz	Q,1	1.20	_
Nutzlast Aufenthaltsraum	qz	Q,A2	1.75	-
Einwirkung aus verdieping	Last	Kat.	Wert,k	Alpha
Wand(0.115*18.5+0.00)*0.50*100%	qz	G	1.06	-
Wand(0.115*18.5+0.00)*0.64*100%	qz	G	1.36	-
Wand(0.115*18.5+0.00)*2.84*100%	qz	G	6.04	-
Wand(0.175*18.5+0.00)*0.50*100%	qz	G	1.62	_
Wand(0.175*18.5+0.00)*0.64*100%	qz	G	2.07	-
Wand(0.175*18.5+0.00)*1.00*100%	qz	G	3.24	_
Wand(0.175*18.5+0.00)*2.84*100%	qz	G	9.19	-
Einwirkung aus kap	Last	Kat.	Wert,k	Alpha
Pos.1.01 Auflager 1 (max.)	qz	G	2.44	_
S1+W	qz	Q,1	1.49	_
Pos.1.03 Auflager 1 (max.)	qz	G	2.35	-
S1+W	qz	Q,1	2.78	_
Pos.1.05 Auflager 3 (max.)	qz	G	1.73	_
S1+W	qz	Q,1	0.77	-
Pos.1.06 Auflager 1 (max.) /1.50	qz	G	2.35	_
S1+W	qz	Q,1	1.57	_
Pos.1.07 Auflager 2 (max.)	F	G	13.85	_
S1+W	F	Q,1	9.75	_
Pos.1.07 Auflager 3 (max.)	F	G	13.85	-
S1+W	F	Q,1	9.75	-
Pos.1.08 Auflager 2 (max.)	F	G	11.71	_
S1+W	F	Q,1	8.78	_
Pos.1.08 Auflager 3 (max.)	F	G	11.71	_
S1+W	F	Q,1	8.78	
Pos.1.09 Auflager 1 (max.)	F	G	1.79	_
S1+W	F	Q,1	1.53	_
Pos.2.01 Auflager 1 (max.)	F	G	3.44	_
S1+W	F	Q,1	1.80	_
Pos.2.01 Auflager 2 (max.)	F	G	2.16	_
S1+W	F	Q,1	1.40	-
Pos.2.01 Auflager 3 (max.)	F	G	11.93	-
S1+W	F	Q,1	9.67	-
Pos.2.02 Auflager 1 (max.)	F	G	9.41	_
S1+W	F	Q,1	6.64	_
Pos.2.02 Auflager 2 (max.)	F	G	9.48	_
S1+W	F	Q,1	6.67	_

Dipl.-Ing B. Grummel. Ing.-Büro für Baustatik


Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever Bauteil: Wand in verdieping



Seite 106 kN, m, sec

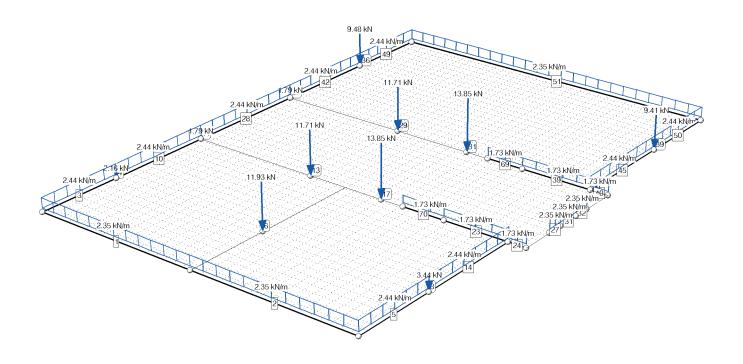
LASTBILDER IN LASTFALL 1: EIGENGEWICHT WAND

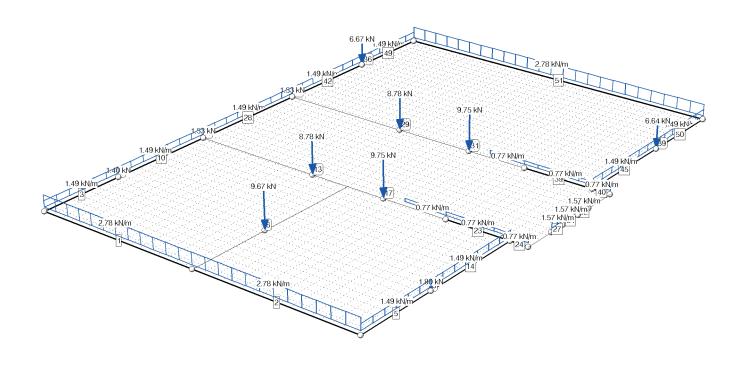
Reacties permanent [kN/m]

Grenzlinien tpg, Trapezlagerkraft in g-Richtung: Faktor: 8.E-2 Min/Max: tpg: -9.98/-1.4 kN/m

Dipl.-Ing B. Grummel. Ing.-Büro für Baustatik

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321


Projekt: 4010-Leever Bauteil: Kap


Seite 107 kN, m, sec

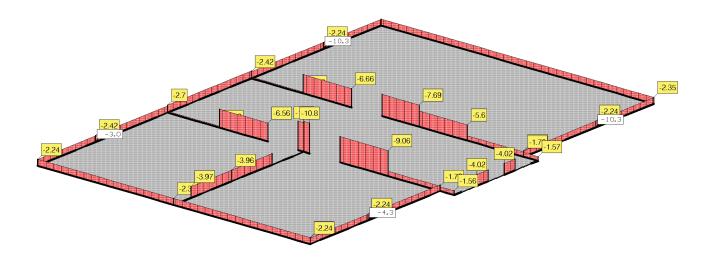
Lastbilder in Lastfall 1: Eigengewicht kap

LASTBILDER IN LASTFALL 1: EIGENGEWICHT KAP

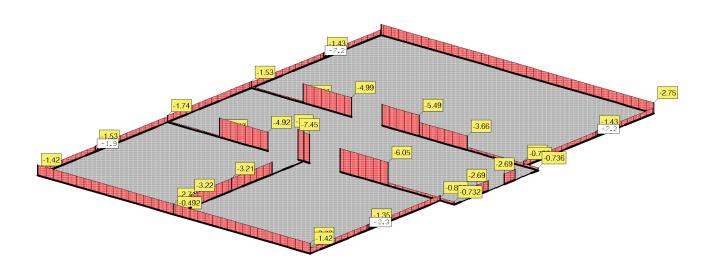
LASTBILDER IN LASTFALL 2: NUTZLASTEN KAP

Dipl.-Ing B. Grummel. Ing.-Büro für Baustatik

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321


Projekt: 4010-Leever

Bauteil: Kap


Seite 108 kN, m, sec

Reacties permanent [kN/m], gemiddeld

Zahlenwerte APt, Punktlagerkräfte Min/Max/Grenzwert (je Zeile): APt: -10.3/-3.0/ 0.0 kN Grenzlinien bpg, Blocklagerkraft in g-Richtung: Faktor: 7.E-2 Min/Max: bpg: -10.76/-0.23 kN/m

Reacties veranderlijk [kN/m], gemiddeld

Zahlenwerte APt, Punktlagerkräfte

Min/Max/Grenzwert (je Zeile): APt: -7.2/-1.9/ 0.0 kN Grenzlinien bpg, Blocklagerkraft in g-Richtung: Faktor: 10.E-2

Min/Max: bpg: -7.91/-0.166 kN/m

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

Seite 109 kN, m, sec

Statische Berechnung eines Plattentragwerkes nach der Methode der Finiten Elemente

Elemente: Viereckige und dreieckige DKT-Elemente auf der Basis der Kirchhoff'schen Plattentheorie in Verbindung mit Trägerrost-Stabelementen Verformungsfreiwerte: Verschiebung in z-Richtung, Verdrehung um die x- und y-Achse X-Y-Z globales 3D-Koordinatensystem Koordinatensysteme: X=x X-Y-Z Koordinatensystem der Ebene r-s-t individuelles Knotenkoordinatensystem Plattenebene I-m-n Stabkoordinatensystem e-f-q Koordinatensystem der Linienlager alle Koordinatensysteme sind rechtshändig orthogonal Z=z Stabachse Das r-s-t-System entsteht aus einer benutzerdefinierten I und m liegen in der Plattenebene. Drehung des n zeigt in Richtung z. x-y-z-Systems um z=t l zeigt vom Stabanfangsknoten zum die z-Achse. m Stabendknoten. Bei kreisbogenförmigen Für alle Knoten, deren r-s-t-System nicht n Stäben schmiegt sich I tangential an den explizit vorgegeben wurde, gilt: r-s-t = x-y-z Kreisbogen. Belastungen Flächenlasten Linienlasten wahlweise auch linear Eigengewichtslasten und Flächenlasten wirken Punktlasten veränderlich; beachte stets in z-Richtung. Bei Temperaturlasten ist wahlweise auch im Linienorientierung beim Δt die Temperaturdifferenz zwischen der r-s-t-System definiert Drillmoment ml oberen und unteren Randfaser. Ergebnisse υz mxv mxv AMr mxx qx qу uz Verschiebungen [mm] mxx, myy Biegemomente [kNm/m] Verdrehungen [mm/m] vx, vy

mxy

qx, qy

Drillmomente [kNm/m]

Querkräfte [kN/m]

AMr, AMs, APt

ame, apg

Einzellagerreaktionen [kNm, kN]

Linienlagerreaktionen [kNm/m, kN/m]

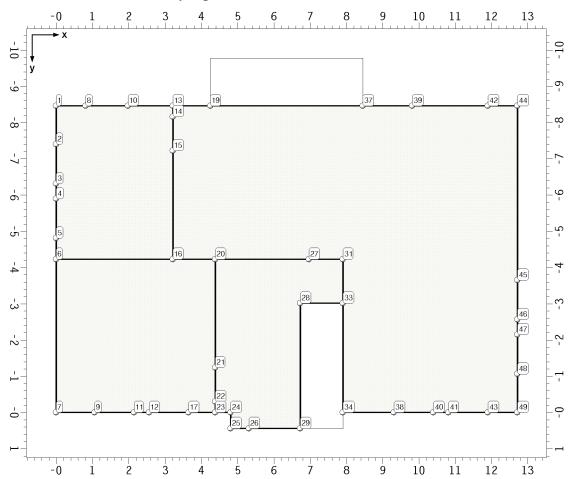
Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

Seite 110 kN, m, sec

Flächenposition 1: 3.01 Verdiepingsvloer


GLOBALE INFORMATIONEN

Angaben zum Rechenlauf

Die Berechnung des Systems erfolgt nichtlinear. Etwaige elastische Flächenbettungen werden nach dem Bettungszahlverfahren berücksichtigt. Hierbei kann es zum Ausfall von Zug- bzw. Druckfedern kommen. Die den geforderten Nachweisen zugeordneten Lastkombinationen werden allein durch die definierten Lastkollektive beschrieben.

FLÄCHENPOSITION 1: 3.01 VERDIEPINGSVLOER

Position 1: 3.01 Verdiepingsvloer in Ebene: Plattenebene

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

Seite 111 kN, m, sec

Flächenposition 1: 3.01 Verdiepingsvloer

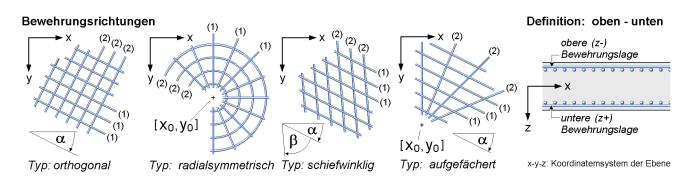
Punkte in Position 1: 3.01 Verdiepingsvloer

x und y beziehen sich auf das Koordinatensystem der Ebene Plattenebene
Typ=Rnd: Der Punkt befindet sich auf dem Rand der Flächenposition. Typ=Fix: Der Punkt befindet sich innerhalb der
Flächenposition und wird vom Netzgenerierer berücksichtigt. Typ=-: Der Punkt ist ohne Relevanz für den Netzgenerierer.

Punkt	X	у	Тур	Punkt	Х	у	Тур	Punkt	Х	у	Тур
-	m	m	-	-	m	m	-	-	m	m	=
1	0.000	-8.460	Rnd	16	3.217	-4.230	Fix	34	7.905	0.000	Rnd
2	0.000	-7.400	Rnd	17	3.650	0.000	Rnd	37	8.455	-8.460	Rnd
3	0.000	-6.310	Rnd	19	4.255	-8.460	Rnd	38	9.310	0.000	Rnd
4	0.000	-5.900	Rnd	20	4.383	-4.230	Fix	39	9.810	-8.460	Rnd
5	0.000	-4.810	Rnd	21	4.383	-1.240	Fix	40	10.400	0.000	Rnd
6	0.000	-4.230	Rnd	22	4.383	-0.300	Fix	41	10.810	0.000	Rnd
7	0.000	0.000	Rnd	23	4.383	0.000	Rnd	42	11.900	-8.460	Rnd
8	0.810	-8.460	Rnd	24	4.805	0.000	Rnd	43	11.900	0.000	Rnd
9	1.060	0.000	Rnd	25	4.805	0.440	Rnd	44	12.710	-8.460	Rnd
10	1.980	-8.460	Rnd	26	5.310	0.440	Rnd	45	12.710	-3.650	Rnd
11	2.150	0.000	Rnd	27	6.965	-4.230	Fix	46	12.710	-2.560	Rnd
12	2.560	0.000	Rnd	28	6.725	-3.018	Rnd	47	12.710	-2.150	Rnd
13	3.217	-8.460	Rnd	29	6.725	0.440	Rnd	48	12.710	-1.060	Rnd
14	3.217	-8.160	Fix	31	7.905	-4.230	Fix	49	12.710	0.000	Rnd
15	3.217	-7.220	Fix	33	7.905	-3.018	Rnd				

Sonstige, in der Position definierte Linien

Typ=Fix: Die Linie wird vom Netzgenerierer berücksichtigt. Typ= - : Die Linie ist ohne Relevanz für den Netzgenerierer.


Linie	Anfpk.	Endpk.	Тур	Linie	Anfpk.	Endpk.	Тур	Linie	Anfpk.	Endpk.	Тур
-	-	-	-	=	-	-	-	=	-	=	-
11	6	16	Fix	19	16	20	Fix	28	20	27	Fix
15	14	13	Fix	22	21	20	Fix	34	27	31	-
16	15	14	-	23	22	21	-	38	33	31	Fix
17	16	15	Fix	24	23	22	Fix				

Rechenkennwerte der Position 1: 3.01 Verdiepingsvloer

Materialbezeichnung: Stahlbeton C20/25

Geom. Kennw	verte	Phys. Kennwert	e	Sonst. Kennwerte				
Bruttofläche: Nettofläche: Umfang:	104.81 m2 104.81 m2 49.26 m	E-Modul: Querdehnzahl: TempKoeff.:	29961.95 MN/m2 0.20 - 1.00 10-5/K	Elementkantenlänge: Generierungsrichtung: Exzentrizität:	0.60 m 0.00 °			
Dicke:	•		keine	LAZeritrizitat.	Kerne			

Erläuterung zu den Bemessungseigenschaften

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

Seite 112 kN, m, sec

Flächenposition 2: Vide

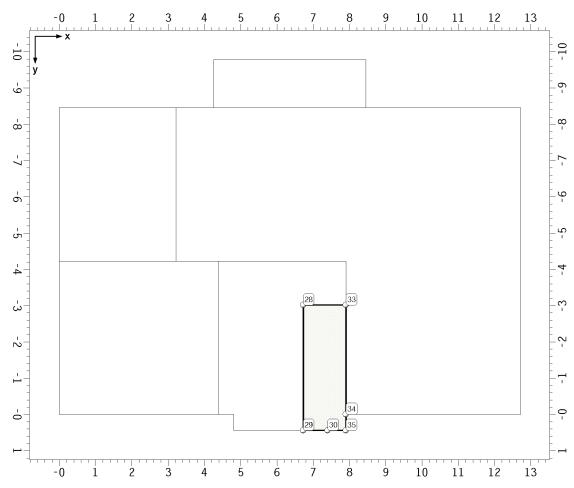
Bemessungseigenschaften der Position 1:

Achsabstände	Grundbewehrung	Bewehrungsrichtung	Bewehrunganordnung
(1)oben = 3.5 cm (2)oben = 4.5 cm (1)unten = 3.5 cm (2)unten = 4.5 cm	(1)oben = 0.00 cm²/m (2)oben = 0.00 cm²/m (1)unten = 0.00 cm²/m (2)unten = 0.00 cm²/m	Typ: orthogonal mit $\alpha = 0.00$ °	Zugbewehrung Transformation nach Baumann

Materialeigenschaften der Position 1:

```
Nachweise nach EC 2: C20/25, BSt 500
```

Beton: $\rho_c = 2200 \text{ kg/m}^3$ fck = 20.0 MN/m² $\epsilon_{c2} = -2.0\%$ $\epsilon_{c2u} = -3.5\%$ nc = 2.00


 $E_{cm} = 29962.0 \text{ MN/m}^2 \text{ fctm} = 2.21 \text{ MN/m}^2$

Bewehrung: $f_{yk} = 500.0 \text{ MN/m}^2$ $f_{tk} = 525.0 \text{ MN/m}^2$ $\epsilon_{su} = 25.0\%$ $E_s = 200000.0 \text{ MN/m}^2$

Maximaler (rechnerischer) Bewehrungsgrad: max μ = 8.0%

FLÄCHENPOSITION 2: VIDE

Position 2: Vide in Ebene: Plattenebene

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

Seite 113 kN, m, sec

Flächenposition 2: Vide

Punkte in Position 2: Vide

x und y beziehen sich auf das Koordinatensystem der Ebene Plattenebene Typ=Rnd: Der Punkt befindet sich auf dem Rand der Flächenposition. Typ=Fix: Der Punkt befindet sich innerhalb der Flächenposition und wird vom Netzgenerierer berücksichtigt. Typ=-: Der Punkt ist ohne Relevanz für den Netzgenerierer.

Pun	kt	x	У	Тур	Punkt	x	У	Тур
-		m	m	-	-	m	m	-
	28	6.725	-3.018	Rnd	33	7.905	-3.018	Rnd
	29	6.725	0.440	Rnd	34	7.905	0.000	Rnd
:	30	7.400	0.440	Rnd	35	7.905	0.440	Rnd

Rechenkennwerte der Position 2: Vide

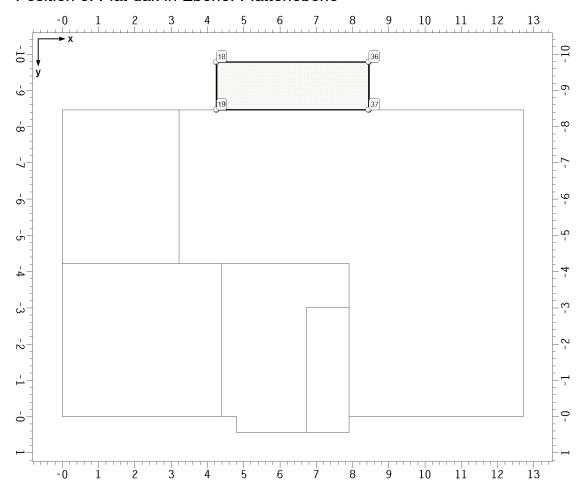
Materialbezeichnung: Stahlbeton C20/25

Geom. Kennwe	erte	Phys. Kennwert	e	Sonst. Kennwerte				
Bruttofläche: Nettofläche: Umfang:	4.08 m2 4.08 m2 9.28 m	E-Modul: Querdehnzahl: TempKoeff.:	29961.95 MN/m2 0.20 - 1.00 10-5/K	Elementkantenlänge: Generierungsrichtung:	0.60 m 0.00 °			
Dicke:	1.00 cm	Bettung:	keine	Exzentrizität:	keine			

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer



Seite 114 kN, m, sec

Flächenposition 3: Plat dak

FLÄCHENPOSITION 3: PLAT DAK

Position 3: Plat dak in Ebene: Plattenebene

Punkte in Position 3: Plat dak

x und y beziehen sich auf das Koordinatensystem der Ebene Plattenebene Typ-Rnd: Der Punkt befindet sich auf dem Rand der Flächenposition. Typ-Fix: Der Punkt befindet sich innerhalb der Flächenposition und wird vom Netzgenerierer berücksichtigt. Typ- - : Der Punkt ist ohne Relevanz für den Netzgenerierer.

Punkt	Х	У	Тур
-	m	m	_
18	4.255	-9.775	Rnd
19	4.255	-8.460	Rnd
36	8.455	-9.775	Rnd
37	8.455	-8.460	Rnd

Rechenkennwerte der Position 3: Plat dak

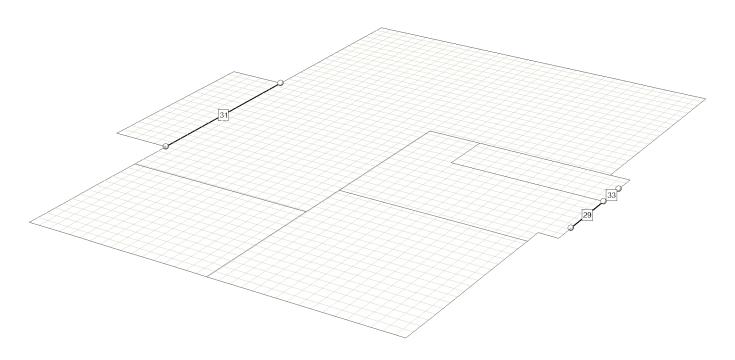
Materialbezeichnung: Stahlbeton C20/25

Geom. Kennw	erte	Phys. Kennwert	е		Sonst. Kennwerte				
Bruttofläche: Nettofläche:	5.52 m2 5.52 m2	E-Modul: Querdehnzahl:	29961.95 M 0.20 -	-	Elementkantenlänge: Generierungsrichtung:	0.60 m 0.00 °			
Umfang: Dicke:	11.03 m 1.00 cm	TempKoeff.: Bettung:	1.00 1 keine	LO-5/K	Exzentrizität:	keine			

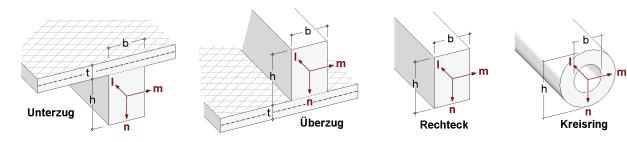
Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer



Seite 115 kN, m, sec


Stäbe

STÄBE

Linien mit Stabattributen

Erläuterung zu den Stabtypen

Beschreibung der Stäbe

Bei gevouteten Stäben weist der Index A auf den Querschnitt am Anfangsknoten und der Index E auf den Querschnitt am Endknoten.

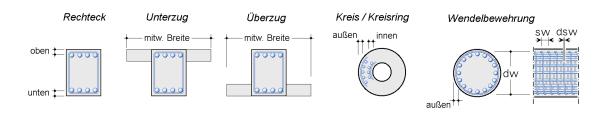
Linie	Anfpk.	Endpk.	Stabtyp	h	b	t
-	-	=	-	cm	cm	cm
29	26	29	Unterzug	20.0	17.5	20.0
31	19	37	Unterzug	16.0	17.5	20.0
33	29	30	Unterzug	20.0	17.5	20.0

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

Seite 116 kN, m, sec


Stäbe

Rechenwerte der Stäbe

Bei gevouteten Stäben weist der Index A auf den Querschnitt am Anfangsknoten und der Index E auf den Querschnitt am Endknoten.

Linie	E-Modu 1	μ	αt	I 1	${f I}_{f m}$
=	MN/m ²	-	10 ⁻⁵ /K	cm ⁴	cm ⁴
29	29962	0.200	1.000	0	130816
31	29962	0.200	1.000	0	85552
33	29962	0.200	1.000	0	130816

Erläuterung zu den Bemessungseigenschaften

Bemessungseigenschaften der Stäbe

Erläuterungen: Spalte (S) = Symmetriebedingung der Bewehrungsanordnung: Z = Zugbewehrung, S = symmetrisch (oben = unten) Die mitwirkende Breite ist nur bei Unter-/Überzügen relevant. $max \mu = maximaler$ (rechnerischer) Bewehrungsgrad

Stab	Achsal	ostände	Grundbewehrung				Breite	max ρ	Grundb.
	oben	unten	oben	unten Anfang E		Ende		Bügel	
	cm	cm	Cm ²	Cm ²	-	cm	cm	%	cm²/m
29	5.0	5.0	0.00	0.00	Z	100.0	100.0	8.0	0.00
31	5.0	5.0	0.00	0.00	Z	100.0	100.0	8.0	0.00
33	5.0	5.0	0.00	0.00	Z	100.0	100.0	8.0	0.00

Materialeigenschaften der Stäbe für Nachweise nach EC 2

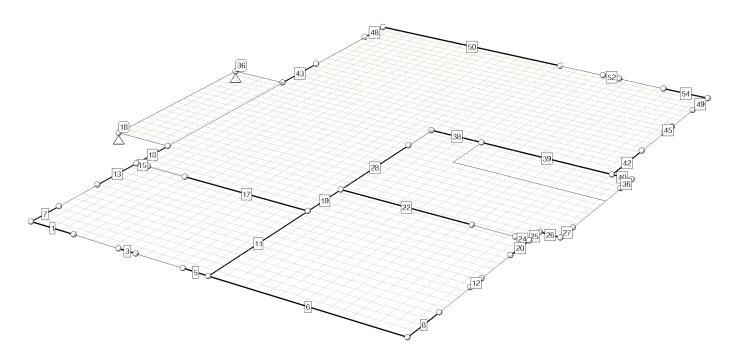
 $\textbf{\textit{Erläuterungen:}} \ \rho_{\text{C}} : \text{Rohdichte des Betons;} \ \ \text{BSt}_{\text{I}} : \text{Betonstahlgüte für die Längsbewehrung}$ $\label{eq:materialdaten} \textit{Materialdaten des Betons: } f_{ck} : \textit{Zylinderdruckfestigkeit}; \quad \alpha_{C} : \vec{Abminderungsbeiwert} \ (Gl. \ 3.15); \quad \epsilon_{C2}, \ \epsilon_{C2u} : Dehnungen; \\ \textit{Dehnungen}; \quad \alpha_{C} : \vec{Abminderungsbeiwert} \ (Gl. \ 3.15); \quad \epsilon_{C2}, \ \epsilon_{C2u} : Dehnungen; \\ \textit{Dehnungen}; \quad \alpha_{C} : \vec{Abminderungsbeiwert} \ (Gl. \ 3.15); \quad \epsilon_{C2}, \ \epsilon_{C2u} : Dehnungen; \\ \textit{Dehnungen}; \quad \alpha_{C} : \vec{Abminderungsbeiwert} \ (Gl. \ 3.15); \quad \epsilon_{C2}, \ \epsilon_{C2u} : Dehnungen; \\ \textit{Dehnungen}; \quad \alpha_{C} : \vec{Abminderungsbeiwert} \ (Gl. \ 3.15); \quad \epsilon_{C2}, \ \epsilon_{C2u} : Dehnungen; \\ \textit{Dehnungen}; \quad \alpha_{C} : \vec{Abminderungsbeiwert} \ (Gl. \ 3.15); \quad \epsilon_{C2}, \ \epsilon_{C2u} : Dehnungen; \\ \textit{Dehnungen}; \quad \alpha_{C} : \vec{Abminderungsbeiwert} \ (Gl. \ 3.15); \quad \epsilon_{C2} : \vec{Abminderungsbeiwert} \ (Gl. \ 3.15); \quad \epsilon_{C2} : \vec{Abminderungsbeiwert} \ (Gl. \ 3.15); \\ \textit{Dehnungen}; \quad \vec{Abminderungsbeiwert} \ (Gl. \ 3.15); \quad \vec{Abminderungsbeiwert} \ (Gl. \ 3.15); \\ \textit{Dehnungen}; \quad \vec{Abminderungsbeimen} \ (Gl. \$ no: Exponent zur Beschreibung der Spannungs-Dehnungs-Linin (ed. 3.17); Ecm: mittlerer Elastizitätsmodul (Sekantenmodul) fc/m: Mittelwert der zentrischen Zugfestigkeit; Für Verformungsberechnungen: Endkriechzahl φ∞,10; Endschwindmaß εcs,∞ Expositionsklassen für Bewehrungskorrosion XC, Betonangriff XF, Betonkorrosion (Feuchtigkeitsklasse AKR) W Materialdaten der Bewehrung: fyk: Streckgrenze; fik: Zugfestigkeit; εsu: Bruchdehnung; Es: Elastizitätsmodul

Stab	Beton	ρ c kg/m3		f _{ck} α _c		εc2u ‰		E _{cm} MN/m2	f _{ctm} MN/m2			ftk MN/m2			хс	XF	W
29	C20/25	2200	500	20.0 s.NAD	-2.0	-3.5	2.00	29962.0	2.21	 	500.0	525.0	25.0	200000.0			
31	C20/25	2200	500	20.0 s.NAD	-2.0	-3.5	2.00	29962.0	2.21	 	500.0	525.0	25.0	200000.0			
33	C20/25	2200	500	20.0 s.NAD	-2.0	-3.5	2.00	29962.0	2.21	 	500.0	525.0	25.0	200000.0			

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer



Seite 117 kN, m, sec

Lagerangaben

LAGERANGABEN

Linienlager und Punktlager mit Linien- und Punktnummern

Linienlager

Cug: Federkonstante gegen eine Verschiebung in z-Richtung. Cve: Federkonstante gegen eine Verdrehung um die Längsachse. Cvf. Federkonstante gegen eine Verdrehung quer zur Längsachse. Im Falle einer nichtlinearen Berechnung wirkt die gekennzeichnete Verschiebungsbehinderung nur für: (1) positive Verschiebungen, (2) negative Verschiebungen, (3) immer.

Linie -	Cug MN/m2	Cve MNm/m	Cvf MNm/m	Linie Cug - MN/m2		Cve MNm/m	Cvf MNm∕m
1	500.000(1)			25	500.000(1)		
3	500.000(1)			26	500.000(1)		
5	500.000(1)			27	500.000(1)		
6	500.000(1)			28	500.000(1)		
7	500.000(1)			36	500.000(1)		
8	500.000(1)			38	500.000(1)		
11	500.000(1)			39	500.000(1)		
12	500.000(1)			40	500.000(1)		
13	500.000(1)			42	500.000(1)		
15	500.000(1)			43	500.000(1)		
17	500.000(1)			45	500.000(1)		
18	500.000(1)			48	500.000(1)		
19	500.000(1)			49	500.000(1)		
20	500.000(1)			50	500.000(1)		
22	500.000(1)			52	500.000(1)		
24	500.000(1)			54	500.000(1)		

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

Seite 118 kN, m, sec

Struktur der Belastung

Punktlager

Cut: Federkonstante gegen eine Verschiebung in z-Richtung. Cvr: Federkonstante gegen eine Verdrehung um die r-Achse. Cvs: Federkonstante gegen eine Verdrehung um die s-Achse. Im Falle einer nichtlinearen Berechnung wirkt die gekennzeichnete Verschiebungsbehinderung nur für: (1) positive Verschiebungen, (2) negative Verschiebungen, (3) immer.

Punkt	Cut	Cvr	Cvs
-	MN/m	MNm	MNm
18	<starr>(1)</starr>		
36	<starr>(1)</starr>		

Scharniere, Schlitze und Linienfedern

Die Tabelle beschreibt den Anschluss des Randes der Flächenpositionen an die globalen Linien. Bei einem Scharnier werden keine Momente um die Linienachse zwischen Linie und Flächenposition übertragen (linienförmiges Momentengelenk). Ein Schlitz überträgt weder Kräfte noch Momente. Er verhält sich wie eine unendlich schmale Aussparung. Mit Linienfedern wird die Position elastisch mit der Linie verbunden. In der Tabelle nicht aufgeführte Linien-Positions-Verbindungen stellen den Normalfall dar. Hierbei werden alle Schnittgrößen übertragen.

Linie	Flächenposition	Тур	Cv	См1	C _{Mm}
-	-	-	kN/m²	kNm/m	kNm/m
31	3: Plat dak	Schlitz			
32	2: Vide	Schlitz			
35	2: Vide	Schlitz			
39	2: Vide	Scharnier			

STRUKTUR DER BELASTUNG

Beschreibung der Belastungsstruktur

Auf der linken Seite sind die Beziehungen der Einwirkungen, Lastfallordner und Lastfälle zueinander in einer Baumstruktur dargestellt. Auf der rechten Seite sind die überlagerungsspezifischen Eigenschaften den links stehenden Objekten zugeordnet angegeben. Ein Lastfallordner entspricht überlagerungstechnisch einer Extremierung der in ihm definierten Objekte und kann seinerseits wiederum additiv oder alternativ überlagert werden.

verwendete Symbole:

Einwirkung

Lastfallordner

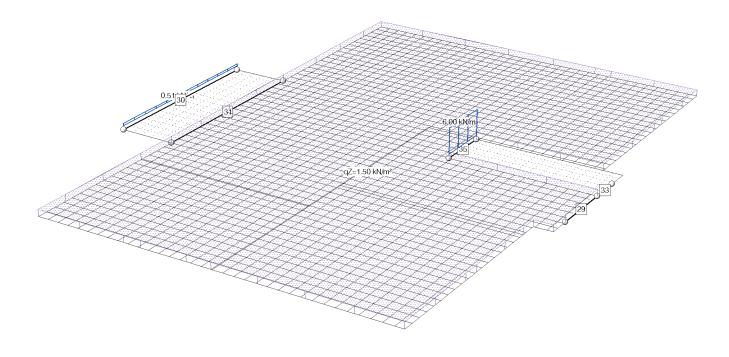
Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

Seite 119 kN, m, sec

Lastbilder in Lastfall 1: Eigengewicht


Beschreibung der Belastungsstruktur

Auf der linken Seite sind die Beziehungen der Einwirkungen, Lastfallordner und Lastfälle zueinander in einer Baumstruktur dargestellt. Auf der rechten Seite sind die überlagerungsspezifischen Eigenschaften den links stehenden Objekten zugeordnet angegeben. Ein Lastfallordner entspricht überlagerungstechnisch einer Extremierung der in ihm definierten Objekte und kann seinerseits wiederum additiv oder alternativ überlagert werden.

🗼 1: ständige Lasten	ständige Lasten
- <mark>↓</mark> ↓↓ 1: Eigengewicht	additiv
- <mark>↓</mark> ↓ 2: Eigengewicht wand	additiv
└ <mark>्</mark> 3: Eigengewicht kap	additiv
2: Nutzlasten (1)	veränderliche Nutzlasten in Wohn-, Büroräumen
- 🚚 4: Nutzlasten (1/1)	additiv
- 🚚 5: Nutzlasten (1/2)	additiv
- <mark>↓</mark> ↓ 6: Nutzlasten (1/3)	additiv
└ <mark>-</mark> [, 7: Nutzlast kap	additiv

LASTBILDER IN LASTFALL 1: EIGENGEWICHT

belastete Objekte in Lastfall 1

bezeichnete, belastete Objekte

Тур	Nummer	Bezeichung
Position	1	3.01 Verdiepingsvloer

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

Seite 120 kN, m, sec

Lastbilder in Lastfall 1: Eigengewicht

Raumgewichte ausgewiesener Flächen in Lastfall 1

Flächentyp	Nr. Bezeichnung	γ
-	-	kN/m³
Position	1 3.01 Verdieping	25.000

Flächenlasten in Lastfall 1

Linear veränderliche Flächenlasten werden durch Vorgabe der Lastordinaten an 3 unterschiedlichen Punkten definiert.

Flächentyp	Nr	. Bezeichnung	bei Pkt.	qz
-		-	-	kN/m2
Position	1	3.01 Verdieping	konst.	1.500

Linienlasten in Lastfall 1

Bei veränderlichen Linienlasten weist der Index A auf die Ordinaten am Anfangsknoten und der Index E auf die Ordinaten am Endknoten.

Linie	Anfpk.	Endpk.	qz	m ₁
-	-	-	kN/m	kNm/m
35	28	33	6.000	0.000
30	18	36	0.510	0.000

Stabsonderlasten in Lastfall 1

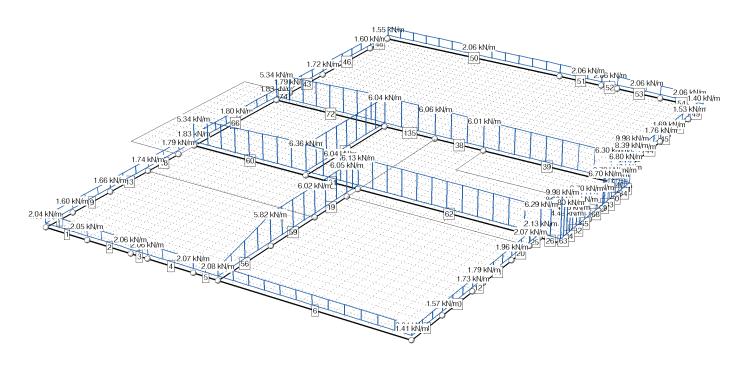
Eigengewichtslasten wirken stets in globaler Z-Richtung.

Linie	Anfpk.	Endpk.	γ	A(Anf)	A(End)	∆tn	hn
_	-	-	kN/m3	m^2	m²	۰K	m
29	26	29	25.000	0.2350	0.2350	0.000	0.000
33	29	30	25.000	0.2350	0.2350	0.000	0.000
31	19	37	25.000	0.2280	0.2280	0.000	0.000

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer


121 kN, m, sec

Lastbilder in Lastfall 2: Eigengewicht wand

LASTBILDER IN LASTFALL 2: EIGENGEWICHT WAND

belastete Objekte in Lastfall 2

Die Lastbilder dieses Lastfalles wurden von den Lagerreaktionen des Bauteils "Wand in verdieping" importiert.

Linienlasten in Lastfall 2

Linie	Anfpk.	Endpk.	qz	m ₁	Linie	Anfpk.	Endpk.	qz	m 1
-	-	-	kN/m	kNm/m	-	-	-	kN/m	kNm/m
5 A	6		2.076	0.000	64⊧		26	4.748	0.000
5∈		5	2.070	0.000	65	61	63	6.701	0.000
6 A	7		2.037	0.000	66	51	65	1.796	0.000
6⊧		6	2.076	0.000	67 A	54		6.040	0.000
56 A	6		1.662	0.000	67⊧		67	6.039	0.000
56⊧		50	5.821	0.000	68	63	69	4.971	0.000
7 A	1		1.551	0.000	69	69	29	6.701	0.000
7 E		8	1.597	0.000	70 A	71		5.102	0.000
8 A	7		1.406	0.000	70∈		30	4.748	0.000
8⊧		9	1.566	0.000	71 A	73		6.796	0.000
59 ∧	50		5.988	0.000	71 ∈		35	8.392	0.000
59⊧		16	6.024	0.000	72 A	67		6.358	0.000
60 △	54		6.358	0.000	72∈		65	5.345	0.000
60⊧		51	5.345	0.000	39 A	34		5.896	0.000
61	53	54	6.039	0.000	39⊧		33	6.013	0.000
62 A	24		5.857	0.000	40 A	35		9.979	0.000
62⊧		53	6.127	0.000	40∈		34	6.296	0.000
26 A	25		9.981	0.000	74 A	65		1.826	0.000
26⊧		24	6.289	0.000	74∈		37	1.795	0.000
63 A	25		8.392	0.000	42 A	34		2.135	0.000
63⋷		59	6.796	0.000	42⊧		38	1.922	0.000
64 A	59		4.488	0.000	54	49	48	2.060	0.000

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

Seite 122 kN, m, sec

Lastbilder in Lastfall 2: Eigengewicht wand

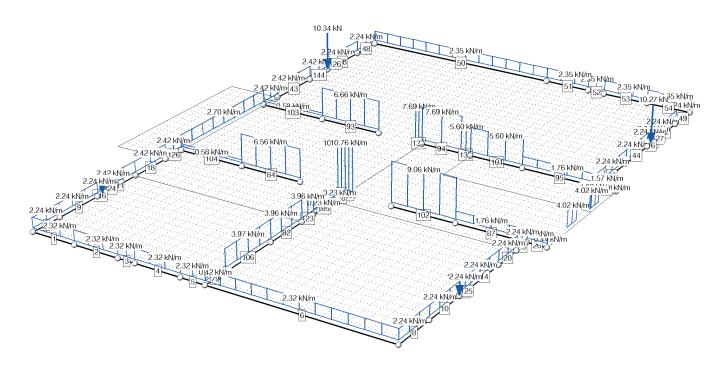
Linienlasten in Lastfall 2

Linie	Anfpk.	Endpk.	qz	mı	Linie	Anfpk.	Endpk.	qz	m
-	-	-	kN/m	kNm/m	_	-	-	kN/m	kNm/m
1 A	2		2.046	0.000	25∈		24	2.133	0.000
1 E		1	2.037	0.000	132 A	26		4.748	0.000
2 A	3		2.056	0.000	132 ∈		61	5.102	0.000
2∈		2	2.046	0.000	133	29	71	6.701	0.000
3 A	4		2.060	0.000	134 A	30		4.748	0.000
3∈		3	2.056	0.000	134∈		73	4.488	0.000
4 A	5		2.070	0.000	135 A	31		6.059	0.000
4∈		4	2.060	0.000	135∈		67	6.110	0.000
9 A	8		1.597	0.000	38 A	33		6.013	0.000
9⋷		10	1.664	0.000	38⊧		31	6.059	0.000
10 A	9		1.566	0.000	43 A	37		1.795	0.000
10∈		11	1.731	0.000	43⊧		39	1.717	0.000
13 A	10		1.664	0.000	44 A	38		1.922	0.000
13∈		13	1.735	0.000	44∈		40	1.756	0.000
12 A	11		1.731	0.000	46 A	39		1.717	0.000
12∈		12	1.793	0.000	46∈		42	1.597	0.000
14 A	12		1.793	0.000	45 A	40		1.756	0.000
14∈		17	1.958	0.000	45⊧		41	1.694	0.000
18 A	13		1.735	0.000	47 A	41		1.694	0.000
18⊧		19	1.795	0.000	47 ∈		43	1.528	0.000
19 A	16		6.024	0.000	48 A	42		1.597	0.000
19⊧		20	6.052	0.000	48⊧		44	1.551	0.000
20 A	17		1.958	0.000	49 A	43		1.528	0.000
20⊧		23	2.069	0.000	49⊧		49	1.405	0.000
126 A	19		1.795	0.000	50	45	44	2.060	0.000
126⊧		51	1.826	0.000	51	46	45	2.060	0.000
128 A	20		6.052	0.000	52	47	46	2.060	0.000
128∈		53	6.062	0.000	53	48	47	2.060	0.000
25 A	23		2.069	0.000					

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer


Seite 123 kN, m, sec

Lastbilder in Lastfall 3: Eigengewicht kap

LASTBILDER IN LASTFALL 3: EIGENGEWICHT KAP

belastete Objekte in Lastfall 3

Die Lastbilder dieses Lastfalles wurden von den Lagerreaktionen des Bauteils "Kap" importiert.

Linienlasten in Lastfall 3

Linie	Anfpk.	Endpk.	qz	m 1	Linie	Anfpk.	Endpk.	qz	m 1
=	-	-	kN/m	kNm/m	-	-	-	kN/m	kNm/m
5	6	5	2.321	0.000	74	65	37	2.423	0.000
6	7	6	2.322	0.000	42	34	38	2.242	0.000
7	1	8	2.236	0.000	98	108	42	2.242	0.000
79	6	80	0.416	0.000	99	109	41	2.241	0.000
8	7	9	2.236	0.000	54	49	48	2.352	0.000
81	79	13	2.417	0.000	101	106	33	5.595	0.000
82	84	16	3.957	0.000	102	93	115	9.061	0.000
12	11	12	2.236	0.000	103	103	65	0.580	0.000
84	87	88	6.560	0.000	104	88	51	0.580	0.000
85	53	90	10.320	0.000	105	85	20	0.230	0.000
86	91	53	10.763	0.000	106	80	84	3.967	0.000
87	24	93	1.759	0.000	1	2	1	2.321	0.000
26	25	24	1.564	0.000	2	3	2	2.321	0.000
63	25	59	0.438	0.000	3	4	3	2.321	0.000
65	61	63	4.019	0.000	4	5	4	2.321	0.000
66	51	65	2.703	0.000	9	8	10	2.236	0.000
69	69	29	4.018	0.000	10	9	11	2.236	0.000
71	73	35	0.438	0.000	116	10	79	2.236	0.000
93	102	103	6.658	0.000	14	12	17	2.236	0.000
94	104	31	7.688	0.000	18	13	19	2.417	0.000
95	34	106	1.758	0.000	123	16	85	3.957	0.000
40	35	34	1.567	0.000	20	17	23	2.236	0.000

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

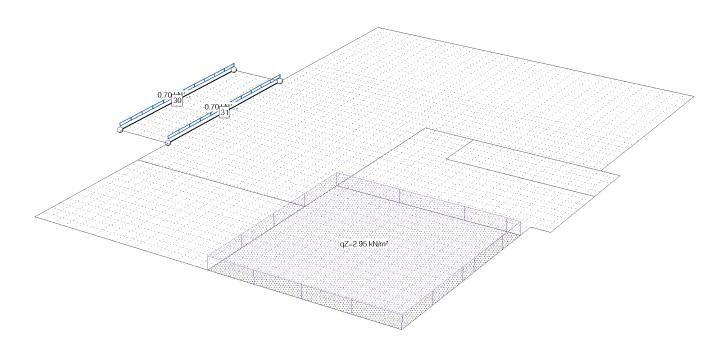
Bauteil: 3.01 Verdiepingsvloer

Seite 124 kN, m, sec

Lastbilder in Lastfall 4: Nutzlasten (1/1)

Linienlasten in Lastfall 3

Bei veränderlichen Linienlasten weist der Index A auf die Ordinaten am Anfangsknoten und der Index E auf die Ordinaten am Endknoten.


Linie	Anfpk.	Endpk.	qz	m ₁	Linie	Anfpk.	Endpk.	qz	ma
-	-	-	kN/m	kNm/m	-	-	-	kN/m	kNm/m
126	19	51	2.417	0.000	146	40	109	2.242	0.000
128	20	53	0.230	0.000	47	41	43	2.241	0.000
25	23	24	2.236	0.000	48	42	44	2.242	0.000
133	29	71	4.018	0.000	49	43	49	2.241	0.000
136	31	105	7.688	0.000	50	45	44	2.352	0.000
138	33	104	5.595	0.000	51	46	45	2.352	0.000
43	37	39	2.423	0.000	52	47	46	2.352	0.000
44	38	40	2.242	0.000	53	48	47	2.352	0.000
144	39	108	2.423	0.000		!	•		

Punktlasten in Lastfall 3

Punkt	Syst.	P _z (P _t)	$M_{X}(M_{r})$	$M_{y}(M_{s})$
-		kN	kNm	kNm
124	r-s-t	3.047	0.000	0.000
125	r-s-t	4.323	0.000	0.000
126	r-s-t	10.340	0.000	0.000
127	r-s-t	10.271	0.000	0.000

LASTBILDER IN LASTFALL 4: NUTZLASTEN (1/1)

belastete Objekte in Lastfall 4

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

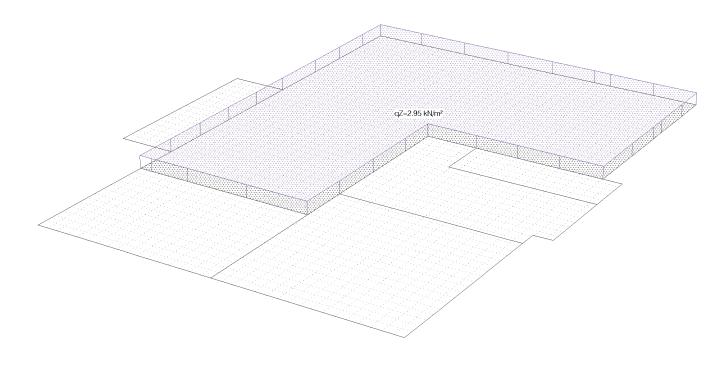
125 kN, m, sec

Lastbilder in Lastfall 5: Nutzlasten (1/2)

Flächenlasten in Lastfall 4

Linear veränderliche Flächenlasten werden durch Vorgabe der Lastordinaten an 3 unterschiedlichen Punkten definiert.

Flächentyp	Nr. Bezeichnung	bei Pkt.	qz
-	-	-	kN/m2
Lastfläche	1	konst.	2.950


Linienlasten in Lastfall 4

Bei veränderlichen Linienlasten weist der Index A auf die Ordinaten am Anfangsknoten und der Index E auf die Ordinaten am Endknoten.

Linie		Anfpk.	Endpk.	qz	m		
	-	-	-	kN/m	kNm/m		
	31	19	37	0.700	0.000		
	30	18	36	0.700	0.000		

LASTBILDER IN LASTFALL 5: NUTZLASTEN (1/2)

belastete Objekte in Lastfall 5

Flächenlasten in Lastfall 5

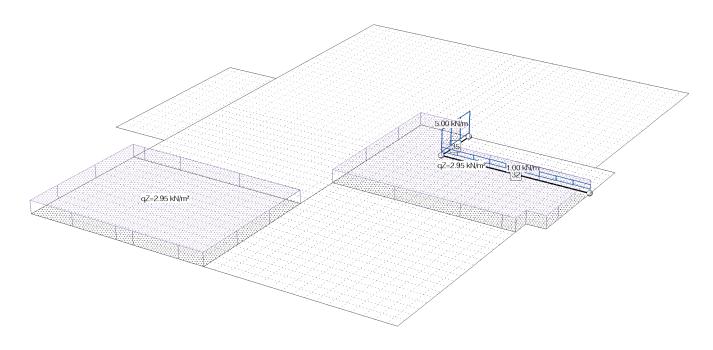
Linear veränderliche Flächenlasten werden durch Vorgabe der Lastordinaten an 3 unterschiedlichen Punkten definiert.

Flächentyp	Nr. Bezeichnung	bei Pkt.	qz
-	-	-	kN/m2
Lastfläche	2	konst.	2.950

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer



Seite 126 kN, m, sec

Lastbilder in Lastfall 6: Nutzlasten (1/3)

LASTBILDER IN LASTFALL 6: NUTZLASTEN (1/3)

belastete Objekte in Lastfall 6

Flächenlasten in Lastfall 6

Linear veränderliche Flächenlasten werden durch Vorgabe der Lastordinaten an 3 unterschiedlichen Punkten definiert.

Flächentyp	Nr. Bezeichnung	bei Pkt.	qz
=	=	-	kN/m2
Lastfläche	4	konst.	2.950
Lastfläche	3	konst.	2.950

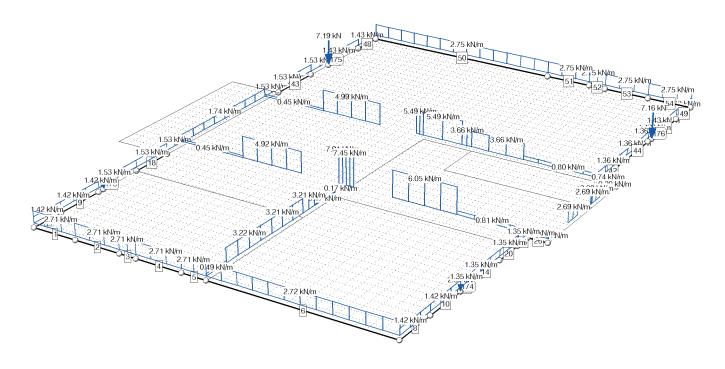
Linienlasten in Lastfall 6

Linie		Anfpk.	Endpk.	qz	ma		
	-	-	-	kN/m	kNm/m		
	32	29	28	1.000	0.000		
	35	28	33	5,000	0.000		

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer


Seite 127 kN, m, sec

Lastbilder in Lastfall 7: Nutzlast kap

LASTBILDER IN LASTFALL 7: NUTZLAST KAP

belastete Objekte in Lastfall 7

Die Lastbilder dieses Lastfalles wurden von den Lagerreaktionen des Bauteils "Kap" importiert.

Linienlasten in Lastfall 7

Linie	Anfpk.	Endpk.	qz	ma	Linie	Anfpk. Endpk		qz	mı
-	-	-	kN/m	kNm/m	-	-	-	kN/m	kNm/m
5	6	5	2.714	0.000	74	65	37	1.532	0.000
6	7	6	2.715	0.000	42	34	38	1.357	0.000
7	1	8	1.424	0.000	98	108	42	1.429	0.000
79	6	80	0.492	0.000	99	109	41	1.428	0.000
8	7	9	1.424	0.000	54	49	48	2.751	0.000
81	79	13	1.528	0.000	101	106	33	3.662	0.000
82	84	16	3.209	0.000	102	93	115	6.049	0.000
12	11	12	1.352	0.000	103	103 65		0.447	0.000
84	87	88	4.921	0.000	104	104 88 51		0.447	0.000
85	53	90	7.911	0.000	105	85	20	0.166	0.000
86	91	53	7.447	0.000	106	80	84	3.216	0.000
87	24	93	0.805	0.000	1	2	1	2.714	0.000
26	25	24	0.732	0.000	2	3	2	2.714	0.000
63	25	59	0.203	0.000	3	4	3	2.714	0.000
65	61	63	2.687	0.000	4	5	4	2.714	0.000
66	51	65	1.742	0.000	9	8	10	1.424	0.000
69	69	29	2.686	0.000	10	9	11	1.424	0.000
71	73	35	0.203	0.000	116	10	79	1.424	0.000
93	102	103	4.992	0.000	14	12	17	1.352	0.000
94	104	31	5.485	0.000	18	13	19	1.528	0.000
95	34	106	0.799	0.000	123	16	85	3.209	0.000
40	35	34	0.736	0.000	20	17	23	1.352	0.000

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

128 kN, m, sec

Beschreibung der geforderten Nachweise

Linienlasten in Lastfall 7

Bei veränderlichen Linienlasten weist der Index A auf die Ordinaten am Anfangsknoten und der Index E auf die Ordinaten am Endknoten.

Linie	Anfpk.	Endpk.	qz	m 7	Linie	Anfpk.	Endpk.	qz	mı
-	-	-	kN/m	kNm/m	-	-	-	kN/m	kNm/m
126	19	51	1.528	0.000	146	40	109	1.357	0.000
128	20	53	0.166	0.000	47	41	43	1.428	0.000
25	23	24	1.352	0.000	48	42	44	1.429	0.000
133	29	71	2.686	0.000	49	43	49	1.428	0.000
136	31	105	5.485	0.000	50	45	44	2.751	0.000
138	33	104	3.662	0.000	51	46	45	2.751	0.000
43	37	39	1.532	0.000	52	47	46	2.751	0.000
44	38	40	1.357	0.000	53	48	47	2.751	0.000
144	39	108	1.532	0.000					

Punktlasten in Lastfall 7

Punkt	Syst. P _z (P _t)		$M_{x}(M_{r})$	$M_{y}(M_{s})$		
=.	-	kΝ	kNm	kNm		
173	r-s-t	1.942	0.000	0.000		
174	r-s-t	2.341	0.000	0.000		
175	r-s-t	7.192	0.000	0.000		
176	r-s-t	7.162	0.000	0.000		

BESCHREIBUNG DER GEFORDERTEN NACHWEISE

Bei Anwendung der Überlagerungsregeln nach Eurocode bedeuten:

Ψ dom	Kombinationsbeiwert für eine	führende	Verkehrslasteinwirkung	(Leiteinwirkung)
$\Psi_{ extsf{sub}}$	Kombinationsbeiwert für eine	nichtführende	Verkehrslasteinwirkung	(Begleiteinwirkung)
γsup	Teilsicherheitsbeiwert für	ungünstig	wirkende Laststellungen	
γinf	Teilsicherheitsbeiwert für	günstig	wirkende Laststellungen	

Bei Anwendung der Überlagerungsregeln nach DIN 18800 bedeuten:

Ydom Kombinationsbeiwert für eine Hauptkombination Ψsub Kombinationsbeiwert für eine Nebenkombination

Überlagerungsregeln Brückenbau und DIN 1055-100 verhalten sich wie Eurocode. Bei nichtlinearer Berechnung bleiben Extremalbildungsvorschriften unberücksichtigt

Werden nachfolgend Nachweise nach Eurocode aufgeführt, so gilt: Der nationale Anhang "Deutschland" wird berücksichtigt.

Nachweis 1: Gebrauchsnachweis

Schnittgrößenermittlung: Schnittgrößenermittlung ohne Nachweise

1: Generierungsvorschrift 1

Generierungsvorschrift zum Nachweis 1, Typ: standard, Überlagerungsregel: charakteristisch

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

Seite 129 kN, m, sec

Beschreibung der geforderten Nachweise

Lastkollektive der Generierungsvorschrift 1 zum Nachweis 1 Faktorisierung der Lastfälle. Negative Lastfallnummern beziehen sich auf Imperfektionen

LK	1	2	3	4	5	6	7	LK	1	2	3	4	5	6	7
1	1.00	1.00	1.00	-	-	-	-	9	1.00	1.00	1.00	-	-	-	1.00
2	1.00	1.00	1.00	1.00	-	-	-	10	1.00	1.00	1.00	1.00	-	-	1.00
3	1.00	1.00	1.00	-	1.00	-	-	11	1.00	1.00	1.00	-	1.00	-	1.00
4	1.00	1.00	1.00	1.00	1.00	-	-	12	1.00	1.00	1.00	1.00	1.00	-	1.00
5	1.00	1.00	1.00	-	-	1.00	-	13	1.00	1.00	1.00	-	-	1.00	1.00
6	1.00	1.00	1.00	1.00	-	1.00	-	14	1.00	1.00	1.00	1.00	-	1.00	1.00
7	1.00	1.00	1.00	-	1.00	1.00	-	15	1.00	1.00	1.00	-	1.00	1.00	1.00
8	1.00	1.00	1.00	1.00	1.00	1.00	-	16	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Nachweis 2: EC 2 Bemessung

EC 2 Bemessung: Tragfähigkeit nach Eurocode 2 (6.1, 6.2, 6.3)

Nachweisoptionen zum Nachweis 2:

Biege	ebemessung
▼ S	Schubbemessung (Begrenzung von z nur NA-DE)
	z aus Biegebemessung
	$z = 0.9 \text{ d} \le \text{d} - 2 \text{ cv}$
	z aus Biegebem. ≤ d - 2 cv
	Bemessung in den Bewehrungsrichtungen
	Bemessung in Hauptquerkraftrichtung
	VRdct NICHT begrenzen
n	nit Mindest-/Querbewehrung (Biegung, Schub)

1: Generierungsvorschrift 1

Generierungsvorschrift zum Nachweis 2, Typ: standard, Überlagerungsregel: Eurocode

Lastkollektive der Generierungsvorschrift 1 zum Nachweis 2

Faktorisierung der Lastfälle. Negative Lastfallnummern beziehen sich auf Imperfektionen

LK	1	2	3	4	5	6	7	LK	1	2	3	4	5	6	7
1	1.00	1.00	1.00	1.50	-	-	-	16	1.35	1.35	1.35	-	-	-	1.50
2	1.35	1.35	1.35	1.50	-	-	-	17	1.00	1.00	1.00	1.50	-	-	1.50
3	1.00	1.00	1.00	-	1.50	-	-	18	1.35	1.35	1.35	1.50	-	-	1.50
4	1.35	1.35	1.35	-	1.50	-	-	19	1.00	1.00	1.00	-	1.50	-	1.50
5	1.00	1.00	1.00	1.50	1.50	-	-	20	1.35	1.35	1.35	-	1.50	-	1.50
6	1.35	1.35	1.35	1.50	1.50	-	-	21	1.00	1.00	1.00	1.50	1.50	-	1.50
7	1.00	1.00	1.00	-	-	1.50	-	22	1.35	1.35	1.35	1.50	1.50	-	1.50
8	1.35	1.35	1.35	-	-	1.50	-	23	1.00	1.00	1.00	-	-	1.50	1.50
9	1.00	1.00	1.00	1.50	-	1.50	-	24	1.35	1.35	1.35	-	-	1.50	1.50
10	1.35	1.35	1.35	1.50	-	1.50	-	25	1.00	1.00	1.00	1.50	-	1.50	1.50
11	1.00	1.00	1.00	-	1.50	1.50	-	26	1.35	1.35	1.35	1.50	-	1.50	1.50
12	1.35	1.35	1.35	-	1.50	1.50	-	27	1.00	1.00	1.00	-	1.50	1.50	1.50
13	1.00	1.00	1.00	1.50	1.50	1.50	-	28	1.35	1.35	1.35	-	1.50	1.50	1.50
14	1.35	1.35	1.35	1.50	1.50	1.50	-	29	1.00	1.00	1.00	1.50	1.50	1.50	1.50
15	1.00	1.00	1.00	-	-	-	1.50	30	1.35	1.35	1.35	1.50	1.50	1.50	1.50

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

130 kN, m, sec

Nationale Anhänge zu den Eurocodes

Tabelle der zu bemessenden Flächenpositionen (Nachweis 2)

Erläuterungen: Spalte (M): Mindestbewehrung für Platten; Spalte (Q): Querbewehrung - Mindestanteil an der Hauptbewehrung Spalte (S): Schubbemessung ('ohne' bzw. 'mit' Schubmindestbewehrung); Spalte (P): Schubbewehrung möglichst vermeiden (Erhöhung der Längsbew.)

BSt_I, BSt_G: Betonstahlgüte für die Längs-, Schubbewehrung ('Gitter': Synonym für Gitterträger mit f_{v/k} = 420 MN/m². Es werden KEINE zulassungsspezifischen Nachweise geführt !); c_{v/D}: Betondeckung der Druckbewehrung;

Θ: Druckstrebenwinkel (0 = minimal, * = vereinf. Ännahme); αq: Winkel der Querkraftbewehrung; Spalte (F): Fuge; Spalte (O): Oberflächenbeschaffenheit der Fuge Spalte (Z): Zugspannung senkrecht zur Fuge. Bei angehängten Lasten ist die Aufhängebewehrung separat zu ermitteln.

Beschreibung des Materials siehe 'Materialeigenschaften der Position'

Pos.	Beton	BSt_1	(M)	(Q)	(S)	BSt_q	Cv,D	Θ	(P) σ _{εq}	(F)	(0)	(Z)
							cm	0	0			
1	C20/25	500	ja	0.20	mit	500	2.0	0	nein 90.0	nein		

Tabelle der zu bemessenden Stäbe (Nachweis 2)

Erläuterungen: Spalte (M): Mindestbewehrung für Träger

Spalte (S): Schubbemessung ('ohne' bzw. 'mit' Schubmindestbew.); BSt_I, BSt_I, Betonstahlgüte für die Längs-, Schubbewehrung c_{V,D}: Betondeckung der Druckbewehrung; Θ : Druckstrebenwinkel (0 = minimal, * = vereinf. Annahme)

Spalte (F): Fuge; Spalte (O): Oberflächenbeschaffenheit der Fuge; bj: Fugenbreite (0 = Stegbreite)

Spalte (Z): Zugspannung senkrecht zur Fuge. Bei angehängten Lasten ist die Aufhängebewehrung separat zu ermitteln. Spalte (W): Wirksamkeitsfaktor der Rundbügel (nur Kreisquerschnitte); teif: Torsion, effektive Wanddicke (0 = nach Norm)

weitere Erläuterungen s. Flächenpositionen; Beschreibung des Materials siehe 'Materialeigenschaften der Stäbe'

Stab	Beton	BSt_1	(M)	(\$)	BSt_{q}	Cv,D	Θ	(F)	(0)	bj	(Z)	(W)	t_{eff}
						CM	0			cm		-	CM
29	C20/25	500	ja	mit	500	3.0	0	nein					0.0
31	C20/25	500	ja	mit	500	3.0	0	nein					0.0
33	C20/25	500	ia	mit	500	3.0	0	nein					0.0

Nachweis 3: Export der Lagerreaktionen

Export der Lagerreaktionen: Export der Lagerlinien- und Lagerpunktreaktionen

Lastkollektive zum Nachweis 3

Faktorisierung der Lastfälle. Negative Lastfallnummern beziehen sich auf Imperfektionen

LK	1	2	3	4	5	6	7
1	1.00	1.00	1.00	-	-	-	-
2	-	-	-	1.00	1.00	1.00	1.00

NATIONALE ANHÄNGE ZU DEN EUROCODES

Lastfaktoren (Hochbau) des nationalen Anhangs

Deutschland

Teilsicherheitsfaktoren für Einwirkungen der ständigen und vorübergehenden Bemessungssituation

Einwirkungsart	y Fsup	y Finf
ständige Lasten	1.35	1.00
veränderliche Lasten	1.50	0.00
Flüssigkeitsdruck/Maschinenlasten	1.35	0.00
Zwang	1.00	0.00
Vorspannung	1.00	1.00

Teilsicherheitsfaktoren für Einwirkungen der außergewöhnlichen Bemessungssituation

Einwirkungsart	y Fsup	γFinf
ständige Lasten	1.00	1.00
veränderliche Lasten	1.00	0.00
Flüssigkeitsdruck/Maschinenlasten	1.00	0.00
Zwang	1.00	0.00
Vorspannung	1.00	1.00
außergewöhnliche Einwirkungen	1.00	1.00

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

Seite 131 kN, m, sec

Nationale Anhänge zu den Eurocodes

Teilsicherheitsfaktoren für Einwirkungen

der Erdbebenbemessungssituation

Einwirkungsart	γFsup	γFinf
ständige Lasten	1.00	1.00
veränderliche Lasten	1.00	0.00
Flüssigkeitsdruck/Maschinenlasten	1.00	0.00
Zwang	1.00	0.00
Vorspannung	1.00	1.00
Erdbeben	1.00	1.00

Teilsicherheitsfaktoren für Einwirkungen der Gebrauchstauglichkeits- und Ermüdungsnachweise

Einwirkungsart	γFsup	γFinf
ständige Lasten	1.00	1.00
veränderliche Lasten	1.00	0.00
Flüssigkeitsdruck/Maschinenlasten	1.00	0.00
Zwang	1.00	0.00
Vorspannung	1.00	1.00

Kombinationsbeiwerte

Die Werte in der Ψ_{2E} -Spalte sind die Ψ_{2} -Werte für die Erdbebenbemessungssituation

Einwirkung	Kategorie	Ψ0	Ψ_1	Ψ2	Ψ 2Е
Wohn-, Büroräume	A, B	0.70	0.50	0.30	0.30
Versammlungs-, Verkaufsräume	C, D	0.70	0.70	0.60	0.60
Lagerräume	E	1.00	0.90	0.80	0.80
Fahrzeuge bis 30 kN	F	0.70	0.70	0.60	0.60
Fahrzeuge bis 160 kN	G	0.70	0.50	0.30	0.30
Dächer	Н	0.00	0.00	0.00	0.00
Schnee/Eis bis 1000 m ü.NN		0.50	0.20	0.00	0.50
Schnee/Eis über 1000 m ü.NN		0.70	0.50	0.20	0.50
Wind		0.60	0.20	0.00	0.00
Temperatur		0.60	0.50	0.00	0.00
Baugrundsetzungen		1.00	1.00	1.00	1.00
sonstige Einwirkungen		0.80	0.70	0.50	0.50

Anmerkung: Flüssigkeitsdruck/Maschinenlasten, Zwang sowie Baugrundsetzungen, sonstige Einwirkungen sind nicht Teil der EN 1990 (Eurocode).

Ausgewählte Bemessungsparameter des nationalen Anhangs

Deutschland

DIN EN 1992-1-1 (EC 2, Hochbau)

Kapite1	Wert	Bedeutung
2.4.2.4(1)		Teilsicherheitsbeiwerte für Beton und Betonstahl
	$\gamma_{\rm C} = 1.50 \gamma_{\rm S} = 1.15$	ständige und vorübergehende Bemessungssituation
	$\gamma_{\rm C} = 1.50 \gamma_{\rm S} = 1.15$	Bemessungssituation für Ermüdung
	$\gamma_{\rm C} = 1.50 \gamma_{\rm S} = 1.15$	Bemessungssituation für Erdbeben
	$\gamma_{\rm C} = 1.30 \gamma_{\rm S} = 1.00$	außergewöhnliche Bemessungssituation
2.4.2.4(2)	$\gamma_{\rm C} = 1.00 \gamma_{\rm S} = 1.00$	Grenzzustand der Gebrauchstauglichkeit
3.1.6(1)P	$\alpha_{\rm cc} = 0.85$	Abminderungsbeiwert für die Betondruckfestigkeit
3.1.6(2)P	$\alpha_{\text{ct}} = 1.00$	Abminderungsbeiwert für die Betonzugfestigkeit
6.2.2(1)	$C_{Rd,c} = 0.15 / \gamma_c$	Beiwerte zur Ermittlung des Querkraftwiderstandes
	$v_{\text{min}} = 0.0525/\gamma_{\text{c}} \text{ k}^{3/2} \text{ fck}^{1/2}$	
	$k_1 = 0.12$	
6.2.2(6)	vV = 0.675	Festigkeitsabminderungsbeiwert für Querkraft
6.3.2(4)	$\mathbf{v}_{T} = 0.525$	Festigkeitsabminderungsbeiwert für Torsion
6.2.3(2)	min cot $\Theta = 1.00$	untere Grenze der Druckstrebenneigung
	$\max \cot \Theta = 3.00$	obere Grenze der Druckstrebenneigung
6.2.3(3)	$\alpha_{\text{CW}} = 1.00$	Beiwert zur Berücksichtigung des Spannungszustands im Druckgurt
	$\mathbf{v}_1 = 0.750$	Beiwert zur Ermittlung der maximalen Querkrafttragfähigkeit
6.2.5(1)	$c = 0.50$, $\mu = 0.90$, $\nu = 0.70$	Fugen: Rauhigkeitsbeiwerte für verzahnte Fugen
	$c = 0.40$, $\mu = 0.70$, $\nu = 0.50$	raue Fugen
	$c = 0.20, \mu = 0.60, \nu = 0.20$	glatte Fugen
	$c = 0.00$, $\mu = 0.50$, $\nu = 0.00$	sehr glatte Fugen
6.8.4(1)	γ F,fat = 1.00	Ermüdung: Sicherheitsbeiwert für die Einwirkungen
6.8.7(1)	$k_1 = 1.00$	Ermüdung: Beiwert zur Ermittlung der Bemessungsfestigkeit des
		Betons

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

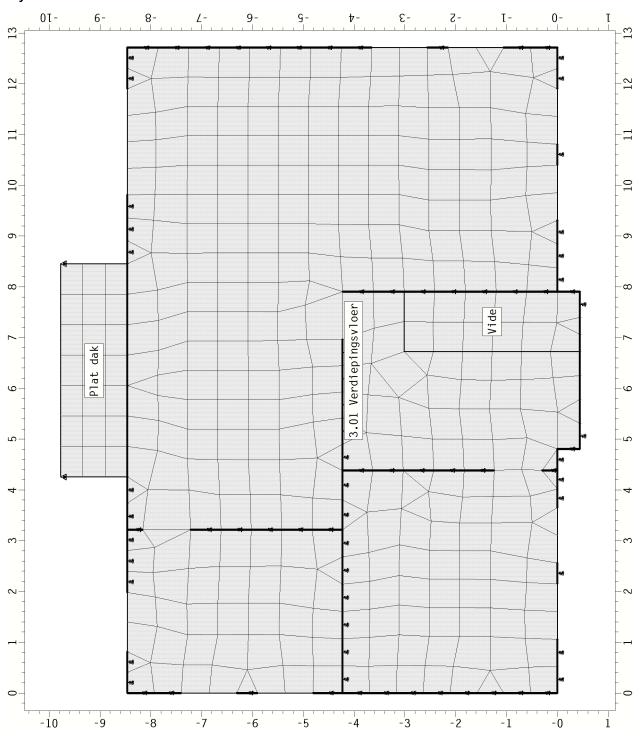
Projekt: 4010-Leever

Bauteil: 3.01 Verdiepingsvloer

Seite 132 kN, m, sec

Kapitel	Wert	Bedeutung
7.3.4(3)	$k_3 = 0.00$	Risse: Beiwert zur Ermittlung des maximalen Rissabstands bei abgeschlossenem Rissbild
	$k_4 = 0.278$	Risse: Beiwert zur Ermittlung des maximalen Rissabstands bei abgeschlossenem Rissbild
9.2.1.1(1)	As,min s. NA-DE	Mindestbewehrung für Balken und Platten [cm²]
9.2.2(5)	ρw,min s. NA-DE	Mindestbewehrungsgrad der Querkraftbewehrung
11.3.5(1)	α lcc = 0.75	Leichtbeton: Abminderungsbeiwert für die Betondruckfestigkeit
11.3.5(2)	α lct = 1.00	Leichtbeton: Abminderungsbeiwert für die Betonzugfestigkeit
11.6.1(1)	C1Rd,c = 0.15 / γ c v1,min = 0.0525 k ^{3/2} f _{1ck} ^{1/2} k ₁₁ = 0.12	Leichtbeton: Beiwerte zur Ermittlung des Querkraftwiderstandes
11.6.1(2)	$\mathbf{v}_1 = 0.675 \ \mathbf{\eta}_1$	Leichtbeton: Festigkeitsabminderungsbeiwert für Querkraft
	$\mathbf{v}_1 = 0.525 \mathbf{\eta}_1$	Leichtbeton: Festigkeitsabminderungsbeiwert für Torsion
11.6.2(1)	$\mathbf{v}_{11} = 0.750 \mathbf{\eta}_{1}$	Leichtbeton: Beiwert zur Ermittlung der maximalen Querkrafttragfähigkeit

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321


Projekt: 4010-Leever

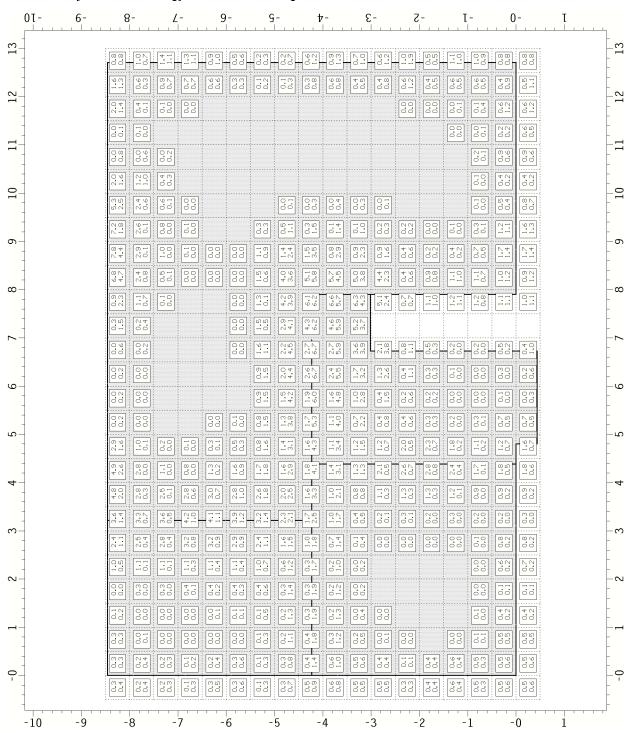
Bauteil: 3.01 Verdiepingsvloer

Seite 133 kN, m, sec

Systeem

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 3.01 Verdiepingsvloer

Seite 134 kN, m, sec

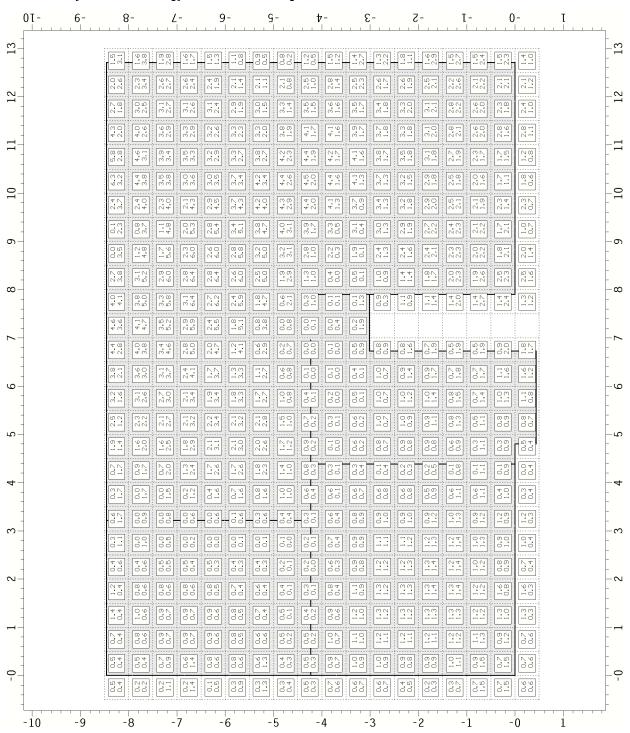
Bovenwapening [cm²/m]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Zahlenwerte aso, Längsbewehrung (oben) als Abs-Max-Raster, (0.50 m * 0.50 m)-Raster um (0.00 m, 0.00 m) Min/Max/Grenzwert (je Zeile): as1o: 0.0/7.8/0.0 cm2/m, as2o: 0.0/6.7/0.0 cm2/m

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 3.01 Verdiepingsvloer

Seite 135 kN, m, sec

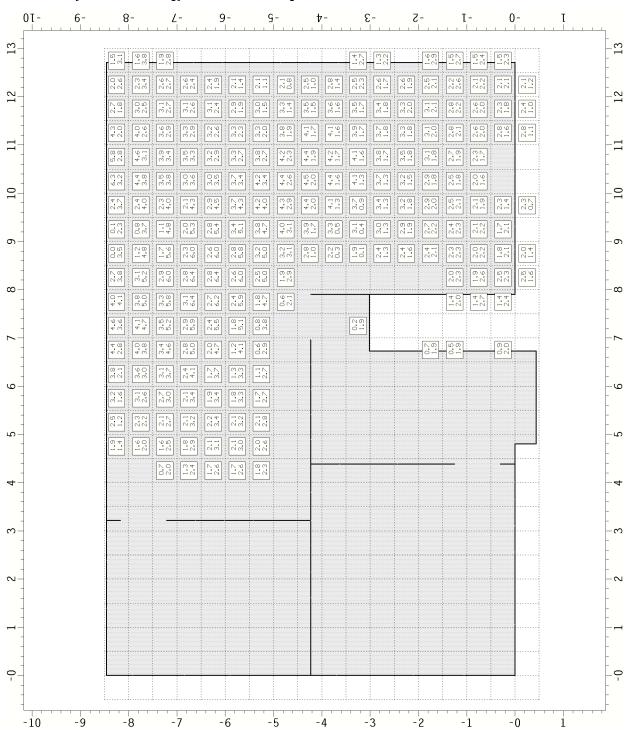
Onderwapening [cm²/m]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Zahlenwerte asu, Längsbewehrung (unten) als Abs-Max-Raster, (0.50 m * 0.50 m)-Raster um (0.00 m, 0.00 m) Min/Max/Grenzwert (je Zeile): as1u: 0.0/6.3/0.0 cm2/m, as2u: 0.0/6.4/0.0 cm2/m

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 3.01 Verdiepingsvloer

Seite 136 kN, m, sec

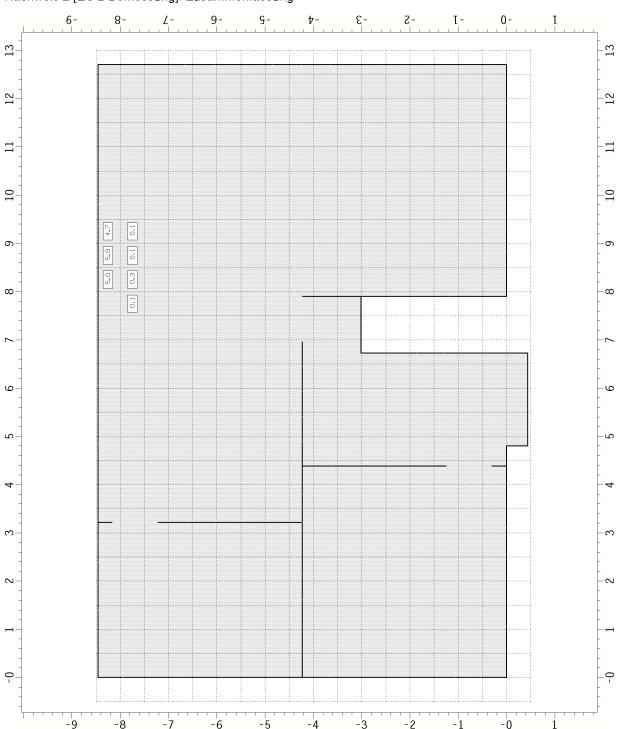
Onderwapening [>1.88 cm²/m]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Zahlenwerte asu, Längsbewehrung (unten) als Abs-Max-Raster, (0.50 m * 0.50 m)-Raster um (0.00 m, 0.00 m) Min/Max/Grenzwert (je Zeile): as1u: 0.0/6.3/1.9 cm2/m, as2u: 0.0/6.4/1.9 cm2/m

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 3.01 Verdiepingsvloer

Seite 137 kN, m, sec

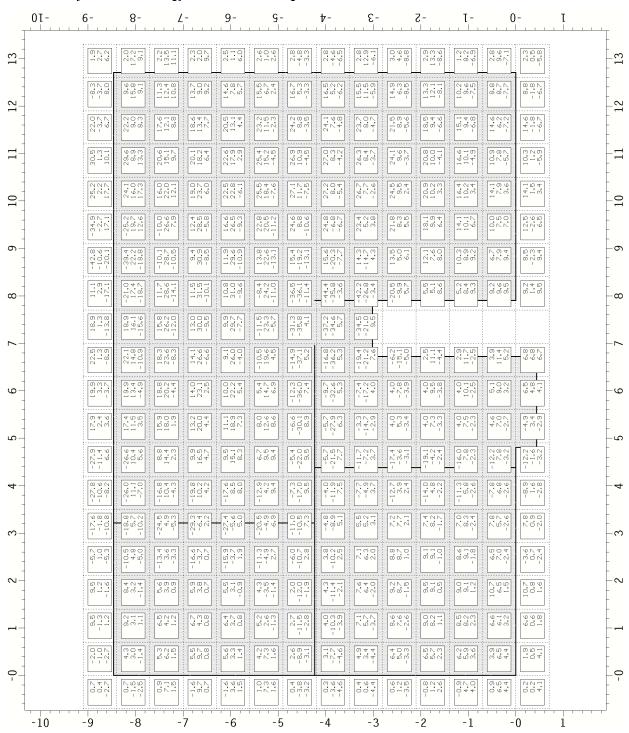
2D wapening [cm²/m²]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Zahlenwerte asq, Schubbewehrung als Abs-Max-Raster, (0.50 m * 0.50 m)-Raster um (0.00 m, 0.00 m) Min/Max/Grenzwert (je Zeile): asq: 0.0/5.9/0.0 cm2/m2

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 3.01 Verdiepingsvloer

Seite 138 kN, m, sec

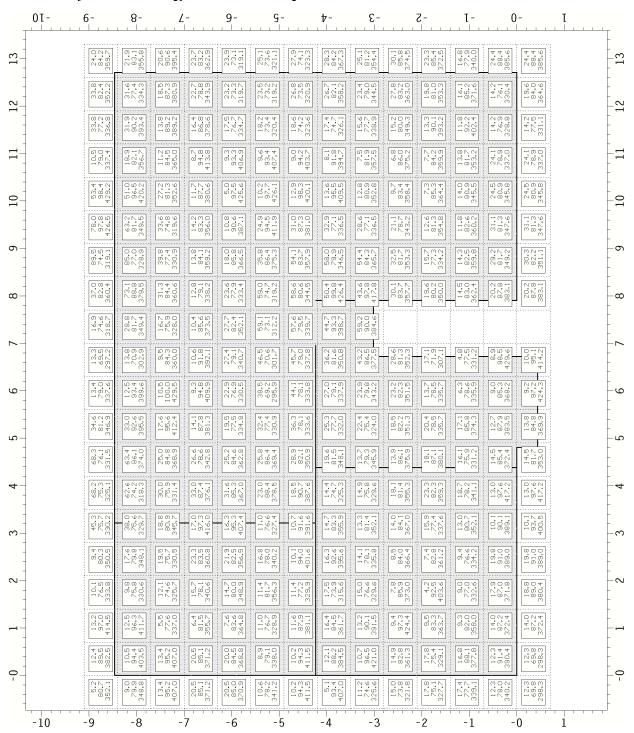
Interne kracht [kNm/m]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Zahlenwerte ext mxx,myy,mxy, extr. Momente als Abs-Max-Raster, (0.70 m * 0.70 m)-Raster um (0.00 m, 0.00 m) Min/Max/Grenzwert (je Zeile): mxx: -44.4/ 30.5/ 0.0 kNm/m, myy: -37.1/ 31.5/ 0.0 kNm/m, mxy: -20.1/ 17.7/ 0.0 kNm/m

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 3.01 Verdiepingsvloer

Seite 139 kN, m, sec

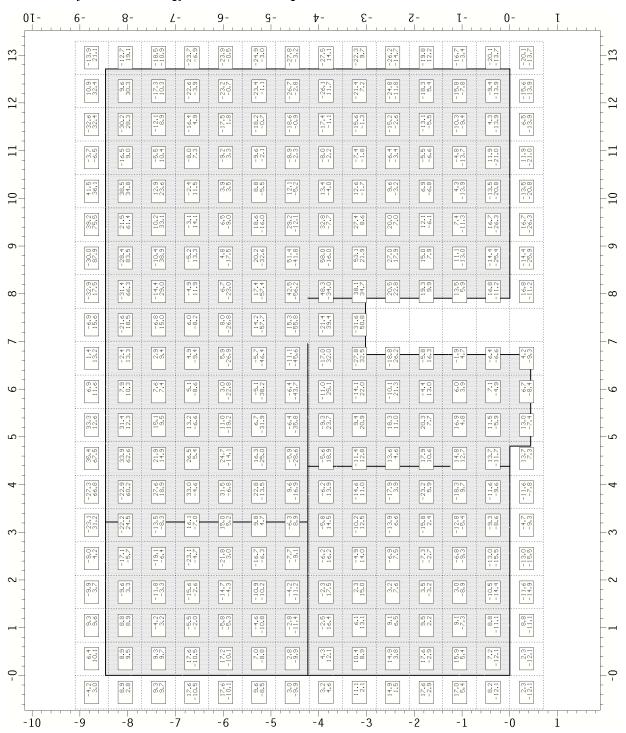
Interne kracht vEd/vRd [kN/m]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Zahlenwerte vEd, vRd, Bemessungsquerkraft, Querkrafttragfähigkeit als Abs-Max-Raster, (0.70 m * 0.70 m)-Raster um (0.00 m, 0.00 m) Min/Max/Grenzwert (je Zeile): vEd: 1.2/89.5/ 0.0 kN/m, vRdct: 68.6/100.0/ 0.0 kN/m, vRdmx: 293.3/429.6/ 0.0 kN/m

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 3.01 Verdiepingsvloer

Seite 140 kN, m, sec

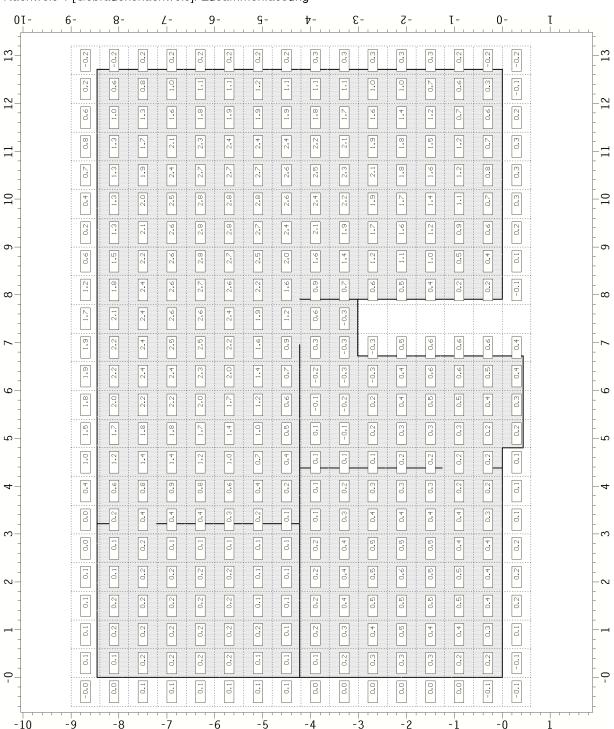
Interne kracht [kN/m]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Zahlenwerte absmax qx,qy, abs. max. Querkräfte als Abs-Max-Raster, (0.70 m * 0.70 m)-Raster um (0.00 m, 0.00 m) Min/Max/Grenzwert (je Zeile): qx: -32.9/ 58.0/ 0.0 kN/m, qy: -57.7/ 87.9/ 0.0 kN/m

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 3.01 Verdiepingsvloer

Seite 141 kN, m, sec

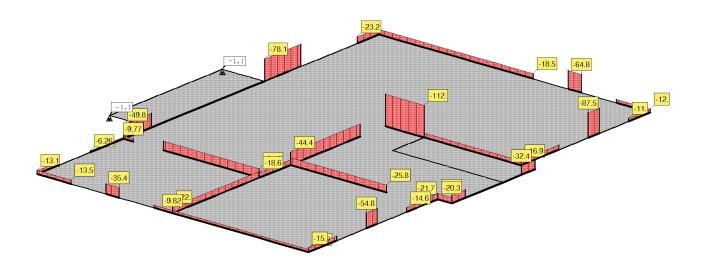
Vervorming [mm]

Nachweis 1 [Gebrauchsnachweis]: Zusammenfassung

Zahlenwerte ext uz, extr. Durchbiegungen als Abs-Max-Raster, (0.60 m * 0.60 m)-Raster um (0.00 m, 0.00 m) Min/Max/Grenzwert (je Zeile): uz: -0.3/ 2.8/ 0.0 mm

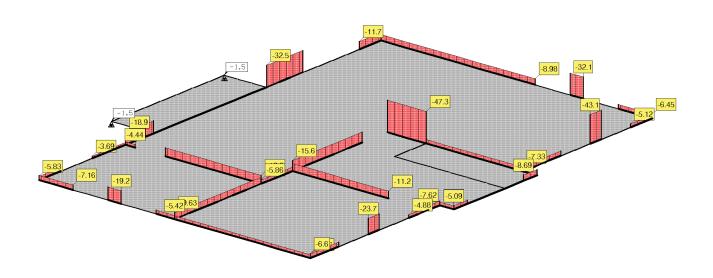
Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 3.01 Verdiepingsvloer

Seite 142 kN, m, sec

Reacties permanent [kN/m], gemiddeld


Nachweis 3 [Export der Lagerreaktionen]

Zahlenwerte APt, Punktlagerkräfte Min/Max/Grenzwert (je Zeile): APt: -1.1/-1.1/ 0.0 kN Grenzlinien bpg, Blocklagerkraft in g-Richtung: Faktor: 7.E-3 Min/Max: bpg: -112.3/-4.18 kN/m

Reacties veranderlijk [kN/m], gemiddeld

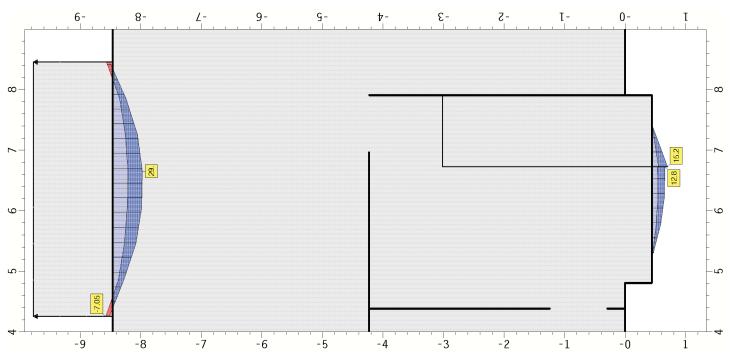
Nachweis 3 [Export der Lagerreaktionen]

Zahlenwerte APt, Punktlagerkräfte

Min/Max/Grenzwert (je Zeile): APt: -1.5/-1.5/ 0.0 kN Grenzlinien bpg, Blocklagerkraft in g-Richtung: Faktor: 2.E-2 Min/Max: bpg: -47.3/-0.211 kN/m

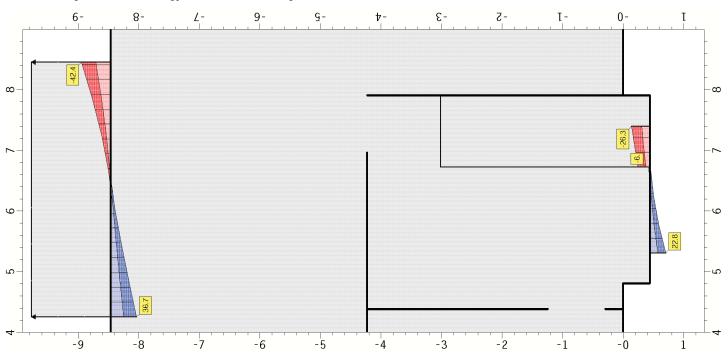
Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 3.01 Verdiepingsvloer

Seite 143 kN, m, sec

Interne kracht (Balken) [kNm]


Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

 $\frac{Grenzlinien\ ext\ M_{11},\ extr.\ Moment\ um\ \eta\text{-Achse: Faktor: }2.E\text{-}2}{Min/Max:\ ext\ M_{11}\text{: }-7.05/29.05\ kNm}$

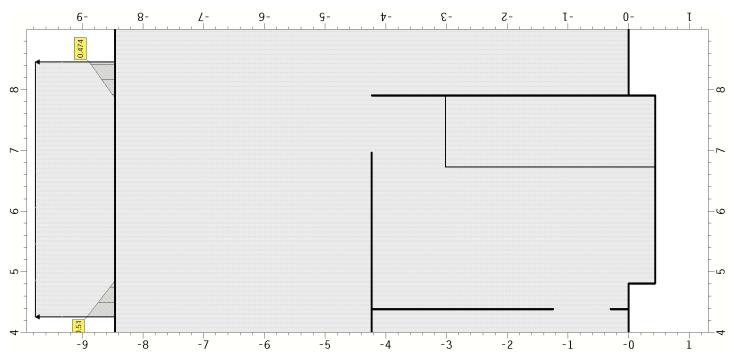
Interne kracht (Balken) [kN]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

 $\frac{\text{Grenzlinien ext } Q\zeta, \text{ extr. Querkraft in } \zeta\text{-Richtung: Faktor: 1.E-2}}{\text{Min/Max: ext } Q\zeta\text{: -42.37/36.7 kN}}$

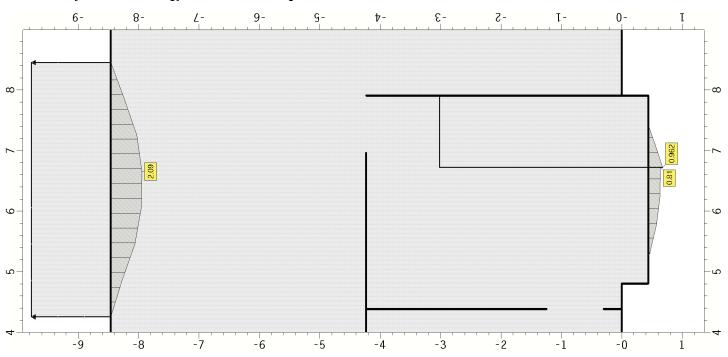
Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 3.01 Verdiepingsvloer

Seite 144 kN, m, sec

Bovenwapening (Balken) [cm²]


Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Grenzlinien Aso, Bewehrung oben: Faktor: 0.905

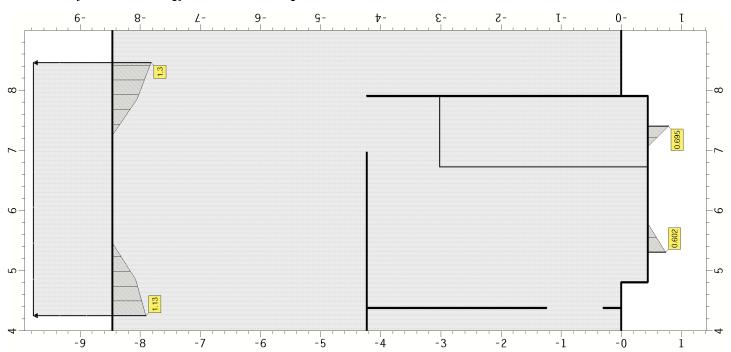
Max: Aso: 0.51 cm2

Onderwapening (Balken) [cm²] Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Grenzlinien Asu, Bewehrung unten: Faktor: 0.246

Max: Asu: 2.09 cm2

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321


Projekt: 4010-Leever

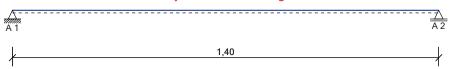
Bauteil: 3.01 Verdiepingsvloer

Seite 145 kN, m, sec

2D wapening (Balken) [cm²/m] Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Grenzlinien asbQ, Bügelbewehrung infolge Querkraft (gesamt): Faktor: 0.492 Max: asbQ: 1.3 cm2/m

POS.3.04 HOUTEN BALKLAAG


Programm: 062A, Vers: 01.04.003 12/2017, Lizenz: SN

Grundlagen: DIN EN 1990/NA: 2010-12

DIN EN 1991-1-1/NA: 2010-12 DIN EN 1995-1-1/NA: 2013-08

- Flächentragwerk, Trägerabstand 80.0 cm

System in z-Richtung

Feldlängen in Z-Richtung


Feld		1
Stützweite	[m]	1.40

Aufl	agerda	ten in Z-Richtung			La	gerung / 1	Federn ——
Nr.	Ort	Lagerung	la	ai	Cw,z	Cw,x	Cd,y
[-]	[m]	[-]	[cm]	[cm]	[kN/cm]	[kN/cm]	[kNm/cm/m]
1	0.00	frei drehbar	10.0	5.0	fest	fest	_
2	1.40	frei drehbar	10.0	5.0	fest	_	_

Stabdaten und Nutzungsklassen

Stab		1
Länge	[m]	1.40
Nutzur	nasklasse	1

Einwirkungen

Erläuterungen zu den Einwirkungen

qz = Lokale Streckenlast in z-Richtung

= horizontaler Abstand [m] vom Systemanfang

= horizontale Lastlänge [m]

() = a,c in Klammern als Längenfaktor (0 = Systemanfang, 1 = ges.Länge) Für Lasten über die ges. Systemlänge entfällt a und c.

Streckeneinwirkungen [kN/m]

			а	C	Betra	ıg,k	Abmin.
Einwirkung aus	Typ Kat.	EWG	[m]	[m]	li.	re.	Alpha
Eigengewicht	qz G	1	_	_	0.10	0.10	_

Flächeneinwirkungen [kN/m²]

Einzugsbreite = 80.0 cm

				a	C	Betra	g,k	Abmin.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Ausbau	qz	G	1	_	-	0.50	0.50	_
nicht begehbare Dächer <=20°	qz	Q,H	1	_	_	1.00	1.00	_
Balkeneigengewicht	qz	G	1	0.00	1.40	0.11	0.11	_

Kategorien und Kombinationsbeiwerte

Kate-			Komb	Beiw	erte
gorie	Bezeichnung	KLED	Psi0	Psi1	Psi2
G	Ständige Einwirkungen	ständig	-	-	_
Q,H	Nutzlast nicht begehbarer Dächer	kurz	_	_	_

		— Теі	lsiche	rheits	beiwert	te —
Nachweis	Situation	G,inf	G,sup	Q1	Qi	A
STR	Ständig und vorübergehend	1.00	1.35	1.50	1.50	-
GZG	Quasi ständig	1.00	1.00	1.00	1.00	-
	Charakteristisch	1.00	1.00	1.00	1.00	_

STR = Versagen oder übermäßige Verformungen des Tragwerks

GZG = Gebrauchstauglichkeit

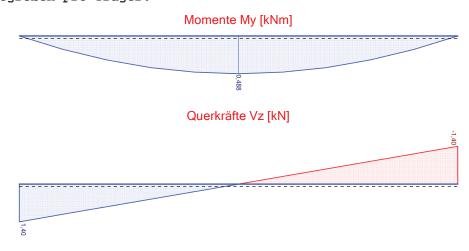
Kombinationen

KNr.	$_{ m LF}$	BemSituation	Kombination	KLED
3	1	STR, P/T	Gsup + Q,H	kurz
6	1	GZG, char	G + Q,H	kurz

Erläuterungen

KLED : Klasse der Lasteinwirkungsdauer

Nachweise:


GZG : Gebrauchstauglichkeit

STR: Versagen oder übermäßige Verformungen des Tragwerks

Bemessungssituationen: char : Charakteristisch

P/T : Ständig und vorübergehend

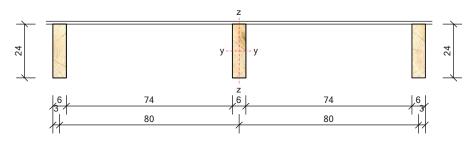
Schnittgrößen pro Träger:

Feldmomente:

Feld	max.Mf	x	min.Mf	x	x01	x02	max.Nx	min.Nx
Nr.	[kNm]	[m]	[kNm]	[m]	[m]	[m]	[kN]	[kN]
1	0.49	0.70	0.14	0.70	_	1.40	_	_

Auflager-, Querkräfte:

Stz.	max.Az	min.Az	max.Ax	min.Ax	min.Vl	max.Vr	max.Vl	min.Vr
Nr.	[kN]							
1	1.40	0.41	-	_	_	1.40	_	0.41
2	1.40	0.41	_	_	-1.40	_	-0.41	_


Bemessung

Baustoff: C24 (DIN EN 338)

Kennwerte [N/mm²]: fc,0,k = 21.0 fv,k = 4.0 E0,mean = 11000 fc,90,k = 2.5 fR,k = 1.0 E90,mean = 370 ft,0,k = 14.0 G,mean = 690 E0,05 = 7400 ft,90,k = 0.4 G,05 = 460 E90,05 = 247

Querschnitt: b/h = 6/24 cm, e = 80.0 cm

Rechteck: b/h = 6/24 cm

Kennwerte: $A = 144.00 \text{ cm}^2$, $Wy = 576.00 \text{ cm}^3$, $Iy = 6912 \text{ cm}^4$ g = 0.07 kN/m, $Wz = 144.00 \text{ cm}^3$, $Iz = 432 \text{ cm}^4$

Grenzzustand der Tragfähigkeit

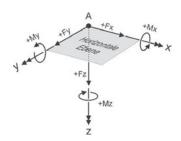
Nachweise

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Feld 1	3	6.11	Biegung $0.85 / 16.62 + 0.70 \times (0.00 / 19.96)$ um die y-Achse	0.051
Stz. 1,R	. 3	6.13	Schub 0.17 / 2.77 aus Vz	0.061
Feld 1	3	NA.60	Biege- und Biegedrillknicken zweiachsig 0.00/(1.06x14.54) + 0.85/(1.00x16.62) + (0.00/19.96) ² Hauptrichtung: y-Achse, Ausweichen in y-Richtung	
Feld 1		NA.61	0.00/(1.06x14.54) + (0.85/(1.00x16.62)) ² 0.00/19.96 Hauptrichtung: z-Achse, Ausweichen in y-Richtung	

Nachweise

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Stz. 1	3	6.3	Querdruck	
			$0.18 / (1.50 \times 1.73)$	0.069

Grenzzustand der Gebrauchstauglichkeit


Nachweis der Verformung

Nachweise auf positive Verformungen beschränkt!

Ort	KNr.	Gleichung	Zwischenwerte	und	Details	Ausnutzung
Feld 1	6		Anfangsverform	nung		
			0.01 / 0.47			0.019

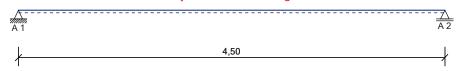
Weiterleitung der Einwirkungen (charakt.)

Die Kraftartrichtungen sind auf das globale Koordinatensystem bezogen. Dabei ist der Betrag der Kraftart $\,$ q in [kN/m].

Lager	Kraftart	Kategorie	Maximal	Minimal	Volllast
1	qz	G	0.51	0.51	0.51
		Q,H	0.70	-	0.70
		Summe,k	1.21	0.51	1.21
2	qz	G	0.51	0.51	0.51
		Q,H	0.70	-	0.70
		Summe,k	1.21	0.51	1.21

POS.3.05 HOUTEN LIGGER

Programm: 062A, Vers: 01.04.003 12/2017, Lizenz: SN


Grundlagen: DIN EN 1990/NA: 2010-12

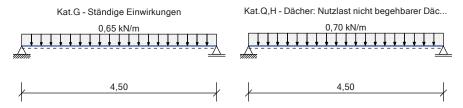
DIN EN 1991-1-1/NA: 2010-12 DIN EN 1995-1-1/NA: 2013-08

System

- Stabtragwerk

System in z-Richtung

Feldlängen in Z-Richtung


Feld		1
Stützweite	[m]	4.50

Auflagerdaten in Z-Richtung — Lagerung / Federn —								
Nr.	Ort	Lagerung	la	ai	Cw,z	Cw,x	Cd,y	
[-]	[m]	[-]	[cm]	[cm]	[kN/cm]	[kN/cm]	[kNm/cm/m]	
1	0.00	frei drehbar	10.0	5.0	fest	fest	_	
2	4.50	frei drehbar	10.0	5.0	fest	_	_	

Stabdaten und Nutzungsklassen

Stab		
Länge	[m]	4.50
Nutzur	ngsklasse	1

Einwirkungen

Erläuterungen zu den Einwirkungen

qz = Lokale Streckenlast in z-Richtung

a = horizontaler Abstand [m] vom Systemanfang

c = horizontale Lastlänge [m]

Streckeneinwirkungen [kN/m]

				a	C	Betra	g,k	Abmın.
Einwirkung aus	Тур	Kat.	EWG	[m]	[m]	li.	re.	Alpha
Pos.3.04 Aufl. 2 LF 1	qz	G	1	0.00	4.50	0.51	0.51	_
	qz	Q,H	1	0.00	4.50	0.70	0.70	-
Balkeneigengewicht	qz	G	1	0.00	4.50	0.14	0.14	-

Kategorien und Kombinationsbeiwerte

Kate-			KombBeiwerte				
gorie	Bezeichnung	KLED	Psi0	Psi1	Psi2		
G	Ständige Einwirkungen	ständig	-	-	_		
Q,H	Nutzlast nicht begehbarer Dächer	kurz	-	_	_		

		— Teilsicherheitsbeiwerte -				
Nachweis	Situation	G,inf	G,sup	Q1	Qi	A
STR	Ständig und vorübergehend	1.00	1.35	1.50	1.50	-
GZG	Quasi ständig	1.00	1.00	1.00	1.00	-
	Charakteristisch	1.00	1.00	1.00	1.00	_
EQU	Ständig und vorübergehend 1)	0.95	1.05	1.50	1.50	-

STR = Versagen oder übermäßige Verformungen des Tragwerks

GZG = Gebrauchstauglichkeit

EQU = Verlust der Lagesicherheit

1) DIN EN 1990/NA(DE), Tab.NA.A.1.2(A) kl. Schwankungen

Kombinationen

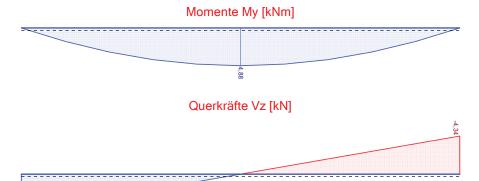
KNr.	LF	BemSituation	Kombination	KLED
1	1	EQU, P/T	Gsup	ständig
7	1	STR, P/T	Gsup + Q,H	kurz
10	1	GZG, char	G + Q,H	kurz

Erläuterungen

KLED : Klasse der Lasteinwirkungsdauer

Nachweise:

EQU : Verlust der Lagesicherheit
GZG : Gebrauchstauglichkeit


STR : Versagen oder übermäßige Verformungen des Tragwerks

Bemessungssituationen:

char : Charakteristisch

P/T : Ständig und vorübergehend

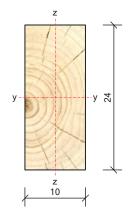
Schnittgrößen pro Träger:

Feldmomente:

Feld	max.Mf	x	min.Mf	X	x01	x02	max.Nx	min.Nx
Nr.	[kNm]	[m]	[kNm]	[m]	[m]	[m]	[kN]	[kN]
1	4.88	2.25	1.65	2.25	_	4.50	_	_

Auflager-, Querkräfte:

Stz.	max.Az	min.Az	max.Ax	min.Ax	min.Vl	max.Vr	max.Vl	min.Vr
Nr.	[kN]							
1	4.34	1.46	_	-	-	4.34	-	1.46
2	4.34	1.46	_	_	-4.34	_	-1.46	_


Bemessung

Baustoff: C24 (DIN EN 338)

Kennwerte [N/mm²]:	fc,0,k =	= 21.0	fv,k	=	4.0	E0,mean	=	11000
	fc,90,k =	= 2.5	fR,k	=	1.0	E90,mean	=	370
	ft,0,k =	= 14.0	G,mean	=	690	E0,05	=	7400
	ft,90,k =	= 0.4	G,05	=	460	E90,05	=	247

Querschnitt: b/h = 10/24 cm

Rechteck: b/h = 10/24 cm

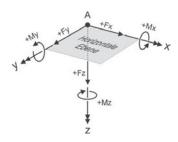
Kennwerte: $A = 240.00 \text{ cm}^2$, $Wy = 960.00 \text{ cm}^3$, $Iy = 11520 \text{ cm}^4$ g = 0.12 kN/m, $Wz = 400.00 \text{ cm}^3$, $Iz = 2000 \text{ cm}^4$

Grenzzustand der Tragfähigkeit

Nachweise

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Feld 1	7	6.11	Biegung $5.08 / 16.62 + 0.70 \times (0.00 / 18.02)$ um die y-Achse	0.306
Stz. 2,L	7	6.13	Schub 0.47 / 2.77 aus Vz	0.171
Feld 1	7	NA.60	Biege- und Biegedrillknicken zweiachsig $0.00/(1.06 \times 14.54) + 5.08/(1.00 \times 16.62) + (0.00/18.02)^2$ Hauptrichtung: y-Achse, Ausweichen in y-Richtung	
Feld 1		NA.61	0.00/(1.06x14.54) + (5.08/(1.00x16.62)) ² 0.00/18.02 Hauptrichtung: z-Achse, Ausweichen in y-Richtung	
Stz. 1	7	6.3	Querdruck 0.33 / (1.50 x 1.73)	0.129
Stz. 1	1	6.7	Lagesicherheit Keine abhebenden Kräfte.	0.000

Grenzzustand der Gebrauchstauglichkeit


Nachweis der Verformung

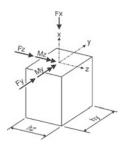
Nachweise auf positive Verformungen beschränkt!

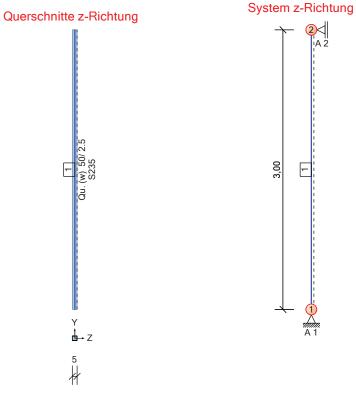
Ort	KNr.	Gleichung Zwischenwerte und Details	Ausnutzung
Feld 1	10	Anfangsverformung	_
		0.57 / 1.50	0.379

Weiterleitung der Einwirkungen (charakt.)

Die Kraftartrichtungen sind auf das globale Koordinatensystem bezogen. Dabei ist der Betrag der Kraftart F in [kN].

Lager	Kraftart	Kategorie	Maximal	Minimal	Volllast
1	FZ	G	1.46	1.46	1.46
		Q,H	1.58	-	1.58
		Summe,k	3.04	1.46	3.04
2	FZ	G	1.46	1.46	1.46
		Q,H	1.58	-	1.58
		Summe,k	3.04	1.46	3.04


POS.3.06 STALEN KOLOM

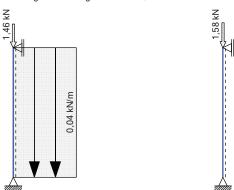

Programm: 077K, Vers: 01.00.010 12/2017

Grundlagen: DIN EN 1990/NA: 2010-12

DIN EN 1991-1-1/NA: 2010-12 DIN EN 1993-1-1/NA: 2010-12

System:

Gesamthöhe = 3.00 m, Bemessung 1-achsig


Höhen		- Federwe	erte —
[m]	Auflagerbezeichnung	Cw	Cd
3.00	Lager oben verschieblich	-	-
0.00	Lager unten unverschieblich	_	_

Nachweisparameter:

Elastischer Nachweis
Plastischer Nachweis (wenn dieser zulässig ist)
Schubbeulprüfung (h/t-Nachweis)
Biegedrillknicken
Verformungen
Kein Brandnachweis

Einwirkungen

Kat.G - Ständige Einwirkungen Kat.Q,H - Dächer: Nutzlast nicht begehbarer Däc...

Erläuterungen zu den Einwirkungen

Fx = Lokale Einzellast in x-Richtung
qx = Lokale Streckenlast in x-Richtung
a = vertikaler Abstand [m] von UK-Wand

Erläuterungen zu den Einwirkungen

c = vertikale Lastlänge [m]

Streckeneinwirkungen [kN/m]

			a	C	Betra	ag,k	Abmin.
Einwirkung aus	Typ Kat.	EWG	[m]	[m]	li.	re.	Alpha
Profileigengewicht	ax G	1	0.00	3.00	-0.04	-0.04	_

Einzeleinwirkungen [kN]

Einwirkung aus	Typ	Kat.	EWG	a[m]	Betrag,k	Abmin.
Pos.3.05 Aufl. 1 LF 1	Fx	G	1	3.00	-1.46	_
	Fx	Q,H	1	3.00	-1.58	-

Kategorien und Kombinationsbeiwerte

Kate-		Komb	Beiw	erte
gorie	Bezeichnung	Psi0	Psi1	Psi2
G	Ständige Einwirkungen	-	-	_
O,H	Nutzlast nicht begehbarer Dächer	_	_	_

		— Tei	— Teilsicherheitsbeiwerte —					
Nachweis	Situation	G,inf	G,sup	Q1	Qi	A		
STR	Ständig und vorübergehend	1.00	1.35	1.50	1.50	_		
GZG	Quasi ständig	1.00	1.00	1.00	1.00	-		
	Häufig	1.00	1.00	1.00	1.00	_		
	Charakteristisch	1.00	1.00	1.00	1.00	_		

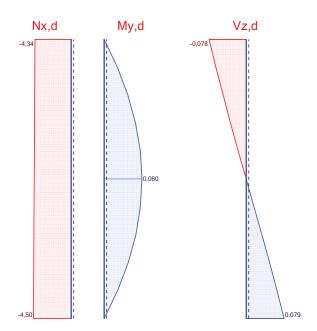
STR = Versagen oder übermäßige Verformungen des Tragwerks

GZG = Gebrauchstauglichkeit

Kombinationen

KNr.	$_{ m LF}$	BemSituation	Kombination
3	1	STR, P/T	Gsup + Q,H
1			Gsup
6	1	GZG, char	G + Q,H

Nachweise:


GZG : Gebrauchstauglichkeit

STR : Versagen oder übermäßige Verformungen des Tragwerks

Bemessungssituationen:
char : Charakteristisch

P/T : Ständig und vorübergehend

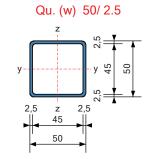
Schnittgrößen

Schnittgrößen (Design)

		h	Nx	My	Vz		h	Nx	My	Vz
		[m]	[kN]	[kNm]	[kN]		[m]	[kN]	[kNm]	[kN]
Nx	min	0.00	-4.50	-	0.03	max	3.00	_	_	-
My	min	0.00	-4.50	_	0.03	max	1.50	-1.52	0.06	_
Vz	min	3.00	-4.34	_	-0.08	max	0.00	-1.58	_	0.08

Auflagerkräfte lokal (Design)

		— min ——			— max ——	
	Az	Ax	My	Az	Ax	My
Lager	[kN]	[kN]	[kNm]	[kN]	[kN]	[kNm]
2	0.00	-	-	0.00	_	_
1	0.00	1.58	_	0.00	4.50	_


Verformumgen (charak.)

		11	WZ	WX		11	WZ	WX
		[m]	[cm]	[cm]		[m]	[cm]	[cm]
WZ	min	3.00	_	-0.009	max	0.00	_	_
WX	min	3.00	_	-0.009	max	1.50	0.104	-0.002

Werkstoff: Baustahl S235 (EN 10025-2)

Kennwerte: E/G-Modul = 210000/ 81000 N/mm², spez. Gewicht = 78.5 kN/m^3 Erzeugnisdicke t <= 40 mm, fyk = 235 N/mm^3 , fuk = 360 N/mm^2 t <= 80 mm, fyk = 215 N/mm^3 , fuk = 360 N/mm^2

Querschnitte

Bereich [m]	Profil		ez	[mm]	ey	[mm]
0.00 - 3.00	Ou. (w)	50/ 2.5		_		_

Kennwerte:

	A	g	MY	Wz	Iy	Ιz
Querschnitt	[cm²] [kN/m]	[cm³]	[cm ³]	$[cm^4]$	[cm ⁴]
Qu. (w) 50/ 2.5	4.68	0.037	6.99	6.99	17	17

Imperfektionen

m = Anzahl Stützen gemäß DIN EN 1993-1-1:2010-12 5.3.2

phi = Schiefstellung

eo = Vorkrümmumg (el. = elastisch, pl. = plastisch)

	z-I	Richtung -			— у-Е	Richtung	
Bereich [m]	m phi	e0,el.	e0,pl.	m	phi	e0,el	e0,pl
0.00 - 3.00	- keine	1/300	1/250	_	_	_	_

Vorgaben:

Erläuterungen zu den Stabvorgaben:

ELIAUCEL	dilgen zu den Stabvorgaben:
ky	= Knicklängenbeiwert Knicken um die y-Achse (Ausweichen z-Richtung)
kz	= Knicklängenbeiwert Knicken um die z-Achse (Ausweichen y-Richtung)
k	= Verdrehbarkeit der Auflager um z-Achse (0.5 = starr, 1.0 = frei)
kw	= Verwölbbarkeit der Stabenden (0.5 = starr, 1.0 = frei)
Halter	= Anzahl der seitlichen Halterungen (Gabellagerungen) die
	gleichmässig über die Stablänge verteilt sind. Bei 2 Halterungen
	sind nur die Stabenden gehalten.
Ort	= Lastangriffspunkt (Obergurt, Untergurt, Schubmittelpunkt)
zul.w	= zulässige Durchbiegung

Stab	1 [m]	ky	kz	k	kw	Halter	Ort	zul.w
1	3.00	1.000	1.000	1.000	1.000	2	OG.	1/200

Grenzzustand der Tragfähigkeit

Spannungsnachweis

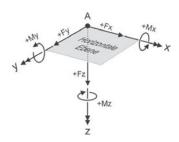
Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Stab 1	3	6.9	N-Beanspruchung (pl)	
			4.503 / 110.049	0.041
Stab 1			Querschnittsklasse 1	

Schubbeulprüfung

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Stab 1	1	6.22	h/t = 18.00 < 60.00 in y-Richtung	0.300
			=> Kein Schubbeulnachweis erforderlich.	
Stab 1		6.22	h/t = 18.00 < 60.00 in z-Richtung	0.300
			=> Kein Schubbeulnachweis erforderlich.	

Stabilitätsnachweis

Ort	KNr.	Gleichung	Zwischenwerte und Details	Ausnutzung
Stab 1	3	6.46	Biegeknicken	
			4.49 / 31.44 um y-Achse	0.143


Grenzzustand der Gebrauchstauglichkeit

Nachweis der Verformung

Ort	KNr.	Gleichung Zwischenwerte und Details	Ausnutzung
Stab 1	6	Verformung z-Richtung	
		0,10/1,50	0.069

Weiterleitung der Einwirkungen (charakt.)

Die Kraftartrichtungen sind auf das globale Koordinatensystem bezogen. Dabei ist der Betrag der Kraftart F in [kN].

Lager	Kraftart	Kategorie	Maximal	Minimal	Volllast
1	FX	G	-	-	0.00
	FZ	G	1.58	1.58	1.58
		Q,H	1.58	_	1.58
		Summe,k	3.16	1.58	3.16
2	FX	G	_	_	0.00

POS.4.01 BEGANE GRONDVLOER

Programm: 050R, Vers: 01.00.033 10/2012

Baustoffe: Normalbeton C 20/25 BSt 500S(A)+BSt 500M(A)
Größtkorn des Zuschlags dg = 32.0 mm

Expositionsklassenauswahl mit Betondeckung: c.min delta.c gew.c Ort Expositionsklassen [mm] [mm] [mm] oben : XC1 20 15 25 unten : XC2 20 15 35

Erläuterungen: XC1 Trocken oder ständig nass

XC2 Nass, selten trocken

Bodenart des Baugrundes: Sand locker

maximal aufnehmbarer Sohldruck zul. Sigma = 0.100 N/mm²

Plattendicke: h = 20.0 cm

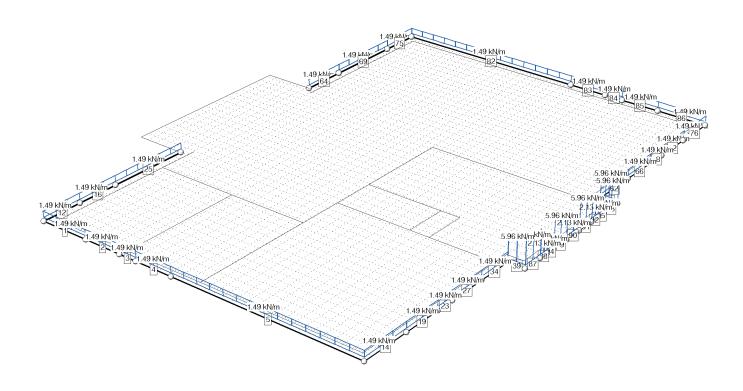
Einwirkungen:

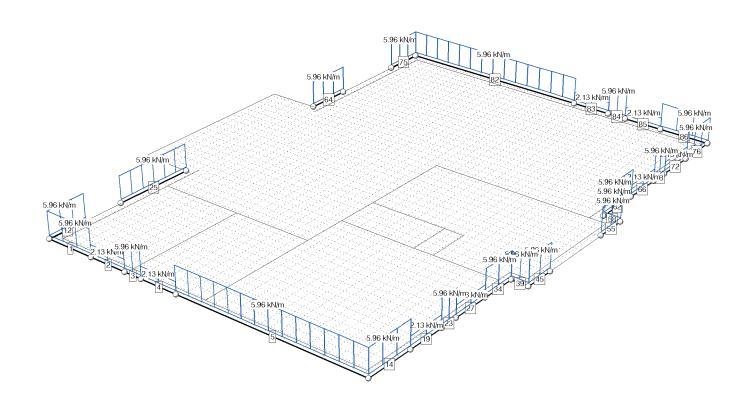
Lasten: $q = Flächenlast [kN/m^2], qz = Linienlast [kN/m]$

Einwirkung aus	Last	Kat.	Wert,k	Alpha
Betondecke (25.00 kN/m3 * 0.20 m)	q	G	5.00	-
Ausbaulasten	q	G	1.50	_
Trennwandzuschlag (3<=g<=5 kN/m)	q	Q,1	1.20	_
Nutzlast	q	Q,A2	1.75	_
Einwirkung aus begane grond	Last	Kat.	Wert,k	Alpha
Einwirkung aus begane grond Wand(0.115*18.5+0.00)*0.70*100%		Kat.	Wert,k 1.49	Alpha
				Alpha - -
Wand(0.115*18.5+0.00)*0.70*100%	qz	G	1.49	Alpha - - -
Wand(0.115*18.5+0.00)*0.70*100% Wand(0.115*18.5+0.00)*1.00*100%	dz dz	G G	1.49	Alpha - - - -

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: Wand in begane grond


160 kN, m, sec

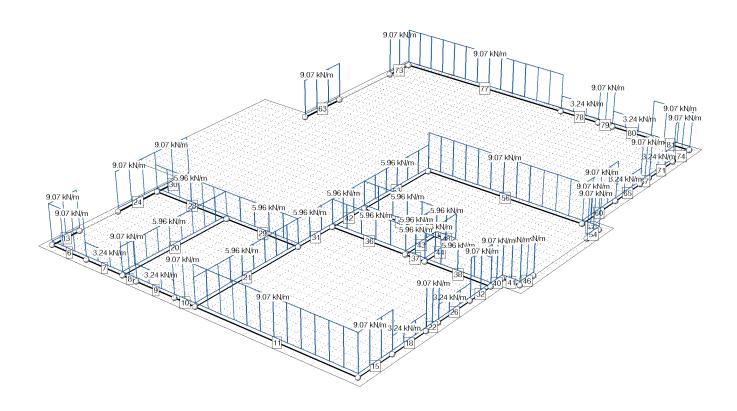
Lastbilder in Lastfall 1: Eigengewicht gevel vr

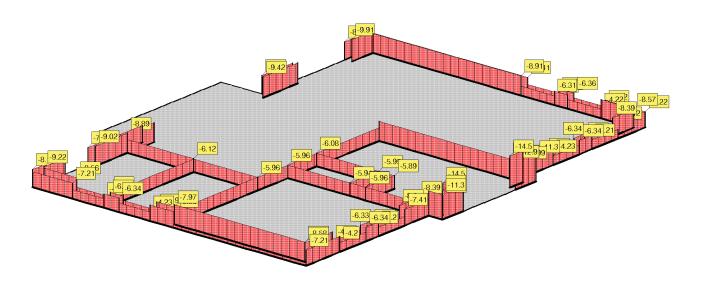
LASTBILDER IN LASTFALL 1: EIGENGEWICHT GEVEL VR

LASTBILDER IN LASTFALL 2: EIGENGEWICHT GEVEL BG

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: Wand in begane grond


161 kN, m, sec

Lastbilder in Lastfall 2: Eigengewicht gevel bg

LASTBILDER IN LASTFALL 3: EIGENGEWICHT WAND BG

Reacties permanent [kN/m], gemiddeld

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer

162 kN, m, sec

Statische Berechnung eines Plattentragwerkes nach der Methode der Finiten Elemente

Elemente: Viereckige und dreieckige DKT-Elemente auf der Basis der Kirchhoff'schen Plattentheorie in Verbindung mit Trägerrost-Stabelementen Verformungsfreiwerte: Verschiebung in z-Richtung, Verdrehung um die x- und y-Achse X-Y-Z globales 3D-Koordinatensystem Koordinatensysteme: X=x X-Y-Z Koordinatensystem der Ebene r-s-t individuelles Knotenkoordinatensystem Plattenebene I-m-n Stabkoordinatensystem e-f-q Koordinatensystem der Linienlager alle Koordinatensysteme sind rechtshändig orthogonal Z=z Stabachse Das r-s-t-System entsteht aus einer benutzerdefinierten I und m liegen in der Plattenebene. Drehung des n zeigt in Richtung z. x-y-z-Systems um z=t l zeigt vom Stabanfangsknoten zum die z-Achse. m Stabendknoten. Bei kreisbogenförmigen Für alle Knoten, deren r-s-t-System nicht n Stäben schmiegt sich I tangential an den explizit vorgegeben wurde, gilt: r-s-t = x-y-z Kreisbogen. Belastungen Flächenlasten Linienlasten wahlweise auch linear Eigengewichtslasten und Flächenlasten wirken Punktlasten veränderlich; beachte stets in z-Richtung. Bei Temperaturlasten ist wahlweise auch im Linienorientierung beim Δt die Temperaturdifferenz zwischen der r-s-t-System definiert Drillmoment ml oberen und unteren Randfaser. Ergebnisse υz mxv mxv AMr mxx qx qу uz Verschiebungen [mm] mxx, myy Biegemomente [kNm/m] Verdrehungen [mm/m] vx, vy

mxy

qx, qy

Drillmomente [kNm/m]

Querkräfte [kN/m]

AMr, AMs, APt

ame, apg

Einzellagerreaktionen [kNm, kN]

Linienlagerreaktionen [kNm/m, kN/m]

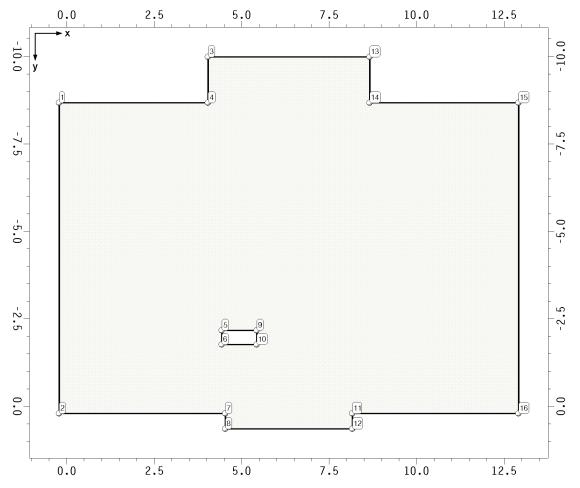
Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer

163 kN, m, sec

Flächenposition 1: 4.01 Begane grondvloer


GLOBALE INFORMATIONEN

Angaben zum Rechenlauf

Die Berechnung des Systems erfolgt nichtlinear. Etwaige elastische Flächenbettungen werden nach dem Bettungszahlverfahren berücksichtigt. Hierbei kann es zum Ausfall von Zug- bzw. Druckfedern kommen. Die den geforderten Nachweisen zugeordneten Lastkombinationen werden allein durch die definierten Lastkollektive beschrieben.

FLÄCHENPOSITION 1: 4.01 BEGANE GRONDVLOER

Position 1: 4.01 Begane grondvloer in Ebene: Plattenebene

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer

164 kN, m, sec

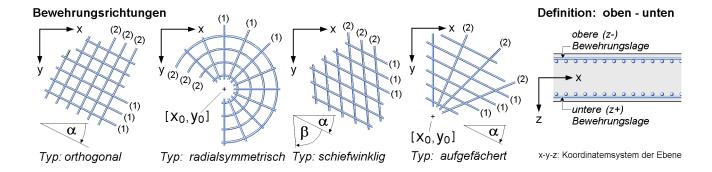
Flächenposition 1: 4.01 Begane grondvloer

Punkte in Position 1: 4.01 Begane grondvloer

x und y beziehen sich auf das Koordinatensystem der Ebene Plattenebene

Typ=Rnd: Der Punkt befindet sich auf dem Rand der Flächenposition. Typ=Fix: Der Punkt befindet sich innerhalb der Flächenposition und wird vom Netzgenerierer berücksichtigt. Typ= - : Der Punkt ist ohne Relevanz für den Netzgenerierer.

Punkt	X	у	Тур	Punkt	x	у	Тур	Punkt	x	у	Тур
-	m	m	=	-	m	m	-	-	m	m	-
1	-0.207	-8.668	Rnd	7	4.543	0.207	Rnd	13	8.662	-9.982	Rnd
2	-0.207	0.207	Rnd	8	4.543	0.648	Rnd	14	8.662	-8.668	Rnd
3	4.048	-9.982	Rnd	9	5.440	-2.160	Rnd	15	12.918	-8.668	Rnd
4	4.048	-8.668	Rnd	10	5.440	-1.760	Rnd	16	12.918	0.207	Rnd
5	4.440	-2.160	Rnd	11	8.168	0.207	Rnd				
6	4.440	-1.760	Rnd	12	8.168	0.648	Rnd				


Rechenkennwerte der Position 1: 4.01 Begane grondvloer

Materialbezeichnung: Stahlbeton C20/25

Geom. Kennw	verte	Phys. Kennwert	е		Sonst. Kennwerte				
Bruttofläche: Nettofläche: Umfang:	124.15 m2 123.75 m2 47.51 m	E-Modul: Querdehnzahl: TempKoeff.:	29961.95 0.20 1.00		Elementkantenlänge: Generierungsrichtung: Exzentrizität:	0.60 m 0.00 °			
Dicke:	18.00 cm	Bettung: Cbz =	20000.00	kN/m3		Kerne			

Bemerkung: Bei einer nichtlinearen Berechnung wird die o. a. Bettung nur bei positiven Verschiebungen in z-Richtung angesetzt.

Erläuterung zu den Bemessungseigenschaften

Bemessungseigenschaften der Position 1:

Achsabstände	Grundbewehrung	Bewehrungsrichtung	Bewehrunganordnung
(1)oben = 3.5 cm (2)oben = 4.5 cm (1)unten = 3.5 cm (2)unten = 4.5 cm	(1) oben = 0.00 cm²/m (2) oben = 0.00 cm²/m (1) unten = 0.00 cm²/m (2) unten = 0.00 cm²/m	Typ: orthogonal mit $\alpha = 0.00$ °	Zugbewehrung Transformation nach Baumann

Materialeigenschaften der Position 1:

Nachweise nach EC 2: C20/25, BSt 500

Beton: $\rho_c = 2200 \text{ kg/m}^3$ f_{ck} = 20.0 MN/m² $\epsilon_{c2} = -2.0\%$ $\epsilon_{c2u} = -3.5\%$ n_c = 2.00

 $E_{cm} = 29962.0 \text{ MN/m}^2 \text{ fctm} = 2.21 \text{ MN/m}^2$

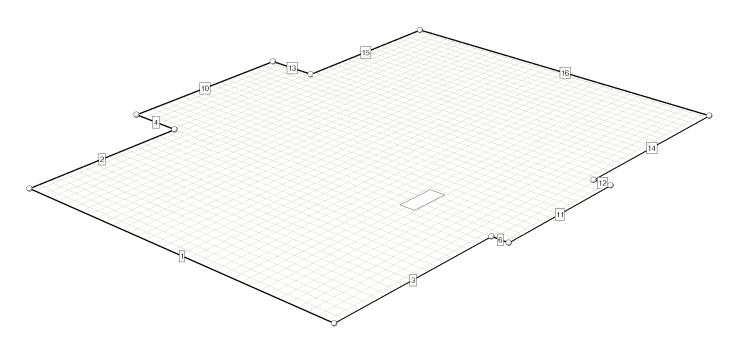
Bewehrung: $f_{yk} = 500.0 \text{ MN/m}^2$ $f_{tk} = 525.0 \text{ MN/m}^2$ $\epsilon_{Su} = 25.0\%$ $E_S = 200000.0 \text{ MN/m}^2$

Maximaler (rechnerischer) Bewehrungsgrad: $\max \mu = 8.0\%$

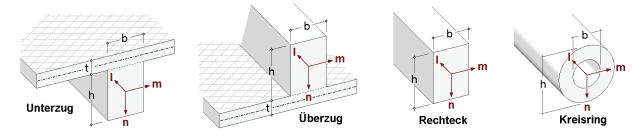
Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer


Seite 165 kN, m, sec

Stäbe


STÄBE

Linien mit Stabattributen

mit Liniennummern

Erläuterung zu den Stabtypen

Beschreibung der Stäbe

Bei gevouteten Stäben weist der Index A auf den Querschnitt am Anfangsknoten und der Index E auf den Querschnitt am Endknoten.

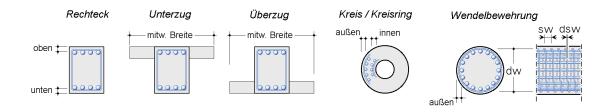
Linie	Anfpk.	Endpk.	Stabtyp	h	b	t
-	-	-	-	cm	cm	cm
1	2	1	Rechteck	50.0	45.0	
2	1	4	Rechteck	50.0	45.0	
3	2	7	Rechteck	50.0	45.0	
4	4	3	Rechteck	50.0	45.0	
6	8	7	Rechteck	50.0	45.0	
10	3	13	Rechteck	50.0	45.0	
11	8	12	Rechteck	50.0	45.0	
12	12	11	Rechteck	50.0	45.0	
13	14	13	Rechteck	50.0	45.0	
14	11	16	Rechteck	50.0	45.0	
15	14	15	Rechteck	50.0	45.0	
16	16	15	Rechteck	50.0	45.0	

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer

166 kN, m, sec


Stäbe

Rechenwerte der Stäbe

Bei gevouteten Stäben weist der Index A auf den Querschnitt am Anfangsknoten und der Index E auf den Querschnitt am Endknoten.

Linie	E-Modu 1	μ	αt	I1	$\mathbf{I}_{\boldsymbol{m}}$	Linie	E-Modu 1	μ	αt	Ιı	${ m I}_{ extsf{m}}$
-	MN/m ²	=-	$10^{-5} / K$	cm ⁴	cm4	-	MN/m ²	-	10 ⁻⁵ /K	cm ⁴	cm4
1	29962	0.200	1.000	0	468750	11	29962	0.200	1.000	0	468750
2	29962	0.200	1.000	0	468750	12	29962	0.200	1.000	0	468750
3	29962	0.200	1.000	0	468750	13	29962	0.200	1.000	0	468750
4	29962	0.200	1.000	0	468750	14	29962	0.200	1.000	0	468750
6	29962	0.200	1.000	0	468750	15	29962	0.200	1.000	0	468750
10	29962	0.200	1.000	0	468750	16	29962	0.200	1.000	0	468750

Erläuterung zu den Bemessungseigenschaften

Bemessungseigenschaften der Stäbe

Erläuterungen: Spalte (S) = Symmetriebedingung der Bewehrungsanordnung: Z = Zugbewehrung, S = symmetrisch (oben = unten) Die mitwirkende Breite ist nur bei Unter-/Überzügen relevant. $\max \mu = \text{maximaler}$ (rechnerischer) Bewehrungsgrad

Stab	Achsal	stände	ände Grundbewehrung		S	mitw. B	mitw. Breite		Grundb.
	oben	unten	oben	unten		Anfang	Ende		Büge1
	cm	CM	Cm ²	Cm ²	-	cm	cm	%	cm²/m
1	5.0	5.0	0.00	0.00	Z			8.0	0.00
2	5.0	5.0	0.00	0.00	Z			8.0	0.00
3	5.0	5.0	0.00	0.00	Z			8.0	0.00
4	5.0	5.0	0.00	0.00	Z			8.0	0.00
6	5.0	5.0	0.00	0.00	Z			8.0	0.00
10	5.0	5.0	0.00	0.00	Z			8.0	0.00
11	5.0	5.0	0.00	0.00	Z			8.0	0.00
12	5.0	5.0	0.00	0.00	Z			8.0	0.00
13	5.0	5.0	0.00	0.00	Z			8.0	0.00
14	5.0	5.0	0.00	0.00	Z			8.0	0.00
15	5.0	5.0	0.00	0.00	Z			8.0	0.00
16	5.0	5.0	0.00	0.00	Z			8.0	0.00

Materialeigenschaften der Stäbe für Nachweise nach EC 2

 $\textbf{\textit{Erläuterungen}}: \rho_{\text{\tiny C}} : \text{Rohdichte des Betons}; \;\; \text{\textit{BSt}}_{\text{\tiny I}} : \text{\textit{Betonstahlg\"ute f\"ur die L\"angsbewehrung}}$ $\label{eq:materialdaten} \textit{Materialdaten des Betons: } f_{ck}: \textit{Zylinderdruckfestigkeit}; \ \ \alpha_{C}: \textit{Abminderungsbeiwert (Gl. 3.15)}; \ \ \epsilon_{c2}, \ \epsilon_{c2u}: \textit{Dehnungen}; \ \ c_{c2u}: \ \ c_{c2u$ nc: Exponent zur Beschreibung der Spannungs-Dehnungs-Linie (Gl. 3.17); Ecm: mittlerer Elastizitätsmodul (Sekantenmodul) f_{ctm}: Mittelwert der zentrischen Zugfestigkeit; Für Verformungsberechnungen: Endkriechzahl φ_{∞,10}; Endschwindmaß ε_{CS,∞} Expositionsklassen für Bewehrungskorrosion XC, Betonangriff XF, Betonkorrosion (Feuchtigkeitsklasse AKR) W Materialdaten der Bewehrung: f_{yk}: Streckgrenze; f_{ik}: Zugfestigkeit; ε_{SU}: Bruchdehnung; E_S: Elastizitätsmodul

Stab	Beton	ρ c kg/m3	BSt _I	f _{ck} MN/m2	αc	εc2 ‰	€c2u ‰	$n_{\rm C}$	E _{cm} MN/m2	f _{ctm} MN/m2	€cs ‰	fyk MN/m2	f _{tk} MN/m2	ε _{su} ‰	Es MN/m2	ХС	XF	W
1	C20/25	2200	500	20.0	s.NAD	-2.0	-3.5	2.00	29962.0	2.21	 	500.0	525.0	25.0	200000.0			
2	C20/25	2200	500	20.0	s.NAD	-2.0	-3.5	2.00	29962.0	2.21	 	500.0	525.0	25.0	200000.0			
3	C20/25	2200	500	20.0	s.NAD	-2.0	-3.5	2.00	29962.0	2.21	 	500.0	525.0	25.0	200000.0			
4	C20/25	2200	500	20.0	s.NAD	-2.0	-3.5	2.00	29962.0	2.21	 	500.0	525.0	25.0	200000.0			
6	C20/25	2200	500	20.0	s.NAD	-2.0	-3.5	2.00	29962.0	2.21	 	500.0	525.0	25.0	200000.0			
10	C20/25	2200	500	20.0	s.NAD	-2.0	-3.5	2.00	29962.0	2.21	 	500.0	525.0	25.0	200000.0			
11	C20/25	2200	500	20.0	s.NAD	-2.0	-3.5	2.00	29962.0	2.21	 	500.0	525.0	25.0	200000.0			
12	C20/25	2200	500	20.0	s.NAD	-2.0	-3.5	2.00	29962.0	2.21	 	500.0	525.0	25.0	200000.0			
13	C20/25	2200	500	20.0	s.NAD	-2.0	-3.5	2.00	29962.0	2.21	 	500.0	525.0	25.0	200000.0			

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer

167 kN, m, sec

Struktur der Belastung

Materialeigenschaften der Stäbe für Nachweise nach EC 2

Erläuterungen: pc: Rohdichte des Betons; BStį: Betonstahlgüte für die Längsbewehrung Materialdaten des Betons: fck: Zylinderdruckfestigkeit; ac: Abminderungsbeiwert (Gl. 3.15); sc2, sc2u: Dehnungen; nc: Exponent zur Beschreibung der Spannungs-Dehnungs-Linie (Gl. 3.17); Ecm: mittlerer Elastizitätsmodul (Sekantenmodul) f_{ctm}: Mittelwert der zentrischen Zugfestigkeit; Für Verformungsberechnungen: Endkriechzahl φ_{∞,10}; Endschwindmaß ε_{CS,∞} Expositionsklassen für Bewehrungskorrosion XC, Betonangriff XF, Betonkorrosion (Feuchtigkeitsklasse AKR) W Materialdaten der Bewehrung: fyk: Streckgrenze; fik: Zugfestigkeit; ssu: Bruchdehnung; Es: Elastizitätsmodul

Stab	Beton	$\rho_{\rm C}$	BSti	f _{ck} α _c	€c2	εc2u	n_c	E_{cm}							XC	ΧF	W
		kg/m3		MN/m2	‰	‰		MN/m2	MN/m2	‰	MN/m2	MN/m2	%	MN/m2			
14	C20/25	2200	500	20.0 s.NAD	-2.0	-3.5	2.00	29962.0	2.21	 	500.0	525.0	25.0	200000.0			
15	C20/25	2200	500	20.0 s.NAD	-2.0	-3.5	2.00	29962.0	2.21	 	500.0	525.0	25.0	200000.0			
16	C20/25	2200	500	20.0 s.NAD	-2.0	-3.5	2.00	29962.0	2.21	 	500.0	525.0	25.0	200000.0			

STRUKTUR DER BELASTUNG

Beschreibung der Belastungsstruktur

Auf der linken Seite sind die Beziehungen der Einwirkungen, Lastfallordner und Lastfälle zueinander in einer Baumstruktur dargestellt. Auf der rechten Seite sind die überlagerungsspezifischen Eigenschaften den links stehenden Objekten zugeordnet angegeben. Ein Lastfallordner entspricht überlagerungstechnisch einer Extremierung der in ihm definierten Objekte und kann seinerseits wiederum additiv oder alternativ überlagert werden.

verwendete Symbole:

Einwirkung

f Lastfallordner

Lastfall

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

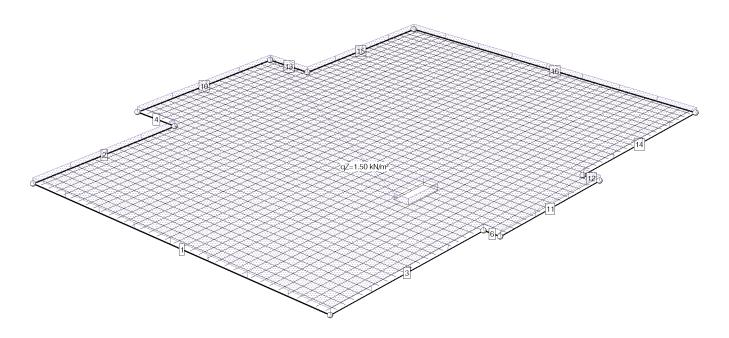
Bauteil: 4.01 Begane grondvloer

168 kN, m, sec

Lastbilder in Lastfall 1: Eigengewicht

Beschreibung der Belastungsstruktur

Auf der linken Seite sind die Beziehungen der Einwirkungen, Lastfallordner und Lastfälle zueinander in einer Baumstruktur dargestellt. Auf der rechten Seite sind die überlagerungsspezifischen Eigenschaften den links stehenden Objekten zugeordnet angegeben. Ein Lastfallordner entspricht überlagerungstechnisch einer Extremierung der in ihm definierten Objekte und kann seinerseits wiederum additiv oder alternativ überlagert werden.


additiv

1: ständige Lasten	ständige Lasten
- <mark>↓</mark> ↓ 1: Eigengewicht	additiv
- <mark>↓</mark> ↓ 2: Eigengewicht wand	additiv
└ <mark>॔</mark>	additiv
2: Nutzlasten (1)	veränderliche Nutzlasten in Wohn-, Büroräumen
⊢ <mark>,</mark> 4: Nutzlasten (1/1)	additiv

LASTBILDER IN LASTFALL 1: EIGENGEWICHT

belastete Objekte in Lastfall 1

5: Nutzlast verdiepingsvl

bezeichnete, belastete Objekte

Тур	Nummer	Bezeichung
Position	1	4.01 Begane grondvloer

Raumgewichte ausgewiesener Flächen in Lastfall 1

Flächentyp	Nr. Bezeichnung	γ
-	-	kN/m³
Position	1 4.01 Begane gro	25.000

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer

169 kN, m, sec

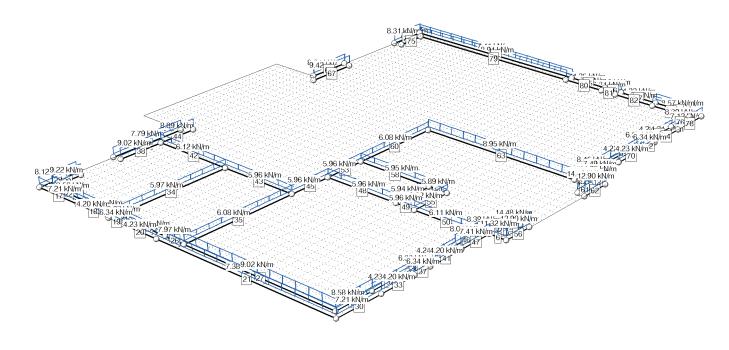
Lastbilder in Lastfall 2: Eigengewicht wand

Flächenlasten in Lastfall 1

Linear veränderliche Flächenlasten werden durch Vorgabe der Lastordinaten an 3 unterschiedlichen Punkten definiert.

Flächentyp	Nr.	. Bezeichnung	bei Pkt.	qz
-		-	-	kN/m2
Position	1	4.01 Begane gro	konst.	1.500

Stabsonderlasten in Lastfall 1


Eigengewichtslasten wirken stets in globaler Z-Richtung.

Linie	Anfpk.	Endpk.	γ	A(Anf)	A(End)	∆tn	hn
_	=	-	kN/m3	m²	m²	°K	m
15	14	15	25.000	0.2250	0.2250	0.000	0.000
3	2	7	25.000	0.2250	0.2250	0.000	0.000
2	1	4	25.000	0.2250	0.2250	0.000	0.000
10	3	13	25.000	0.2250	0.2250	0.000	0.000
4	4	3	25.000	0.2250	0.2250	0.000	0.000
13	14	13	25.000	0.2250	0.2250	0.000	0.000
1	2	1	25.000	0.2250	0.2250	0.000	0.000
14	11	16	25.000	0.2250	0.2250	0.000	0.000
16	16	15	25.000	0.2250	0.2250	0.000	0.000
11	8	12	25.000	0.2250	0.2250	0.000	0.000
6	8	7	25.000	0.2250	0.2250	0.000	0.000
12	12	11	25.000	0.2250	0.2250	0.000	0.000

LASTBILDER IN LASTFALL 2: EIGENGEWICHT WAND

belastete Objekte in Lastfall 2

Die Lastbilder dieses Lastfalles wurden von den Lagerreaktionen des Bauteils "Wand in begane grond" importiert.

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer

Seite 170 kN, m, sec

Lastbilder in Lastfall 2: Eigengewicht wand

Linienlasten in Lastfall 2

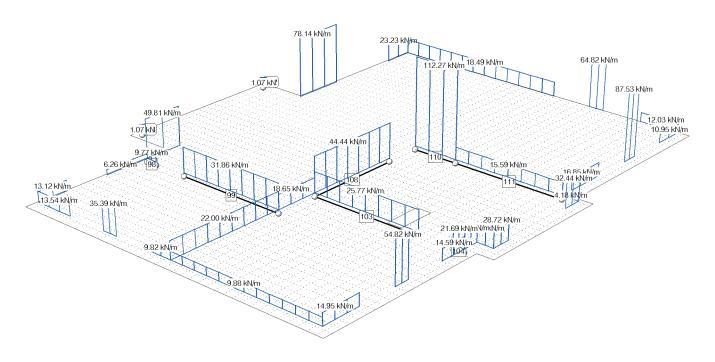
Bei veränderlichen Linienlasten weist der Index A auf die Ordinaten am Anfangsknoten und der Index E auf die Ordinaten am Endknoten.

Linie	Anfpk.	Endpk.	qz	m 1	Linie	Anfpk.	Endpk.	qz	m 1
	-	-	kN/m	kNm/m		-		kN/m	kNm/m
17	17	1	7.209	0.000	53	69	84	5.960	0.000
18	18	17	4.205	0.000	54	73	86	5.943	0.000
19	20	18	6.341	0.000	55	75	88	6.018	0.000
20	22	20	4.231	0.000	56	8	89	12.899	0.000
21	2	22	7.383	0.000	57	81	91	14.484	0.000
22	25	26	8.561	0.000	58	86	84	5.950	0.000
23	27	25	4.208	0.000	59	88	86	5.889	0.000
24	29	27	6.268	0.000	60	84	97	6.078	0.000
25	31	29	4.187	0.000	61	98	99	14.461	0.000
26	33	31	7.968	0.000	62	100	12	12.903	0.000
27	35	33	9.018	0.000	63	101	97	8.953	0.000
28	1	37	8.118	0.000	64	99	101	8.986	0.000
29	26	39	9.221	0.000	12	12	11	11.281	0.000
30	2	40	7.207	0.000	65	101	106	8.453	0.000
31	35	42	8.578	0.000	66	11	107	7.486	0.000
32	42	44	4.234	0.000	67	108	109	9.417	0.000
33	40	46	4.204	0.000	68	14	110	8.342	0.000
34	27	48	5.972	0.000	69	106	112	4.225	0.000
35	33	50	6.082	0.000	70	107	114	4.235	0.000
36	44	52	6.331	0.000	71	112	116	6.338	0.000
37	46	54	6.341	0.000	72	114	118	6.336	0.000
38	55	56	9.021	0.000	73	116	120	4.278	0.000
39	57	4	7.790	0.000	74	118	122	4.210	0.000
40	52	59	4.240	0.000	75	123	124	9.911	0.000
41	54	61	4.197	0.000	76	120	126	8.389	0.000
42	48	56	6.124	0.000	77	127	15	8.314	0.000
43	50	48	5.960	0.000	78	122	16	7.123	0.000
44	56	67	8.889	0.000	79	129	124	8.907	0.000
45	50	69	5.958	0.000	80	131	129	4.249	0.000
46	59	71	8.040	0.000	81	133	131	6.309	0.000
47	61	7	7.408	0.000	82	135	133	4.222	0.000
48	73	69	5.962	0.000	83	126	135	8.566	0.000
49	75	73	5.957	0.000	84	139	15	7.407	0.000
50	71	75	6.107	0.000	85	140	139	4.245	0.000
6	8	7	11.317	0.000	86	142	140	6.359	0.000
51	71	80	8.392	0.000	87	144	142	4.219	0.000
52	81	80	8.633	0.000	88	16	144	7.221	0.000

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer


171 kN, m, sec

Lastbilder in Lastfall 3: Eigengewicht verdiepingv

LASTBILDER IN LASTFALL 3: EIGENGEWICHT VERDIEPINGV

belastete Objekte in Lastfall 3

Die Lastbilder dieses Lastfalles wurden von den Lagerreaktionen des Bauteils "3.01 Verdiepingsvloer" importiert.

Linienlasten in Lastfall 3

Bei veränderlichen Linienlasten weist der Index A auf die Ordinaten am Anfangsknoten und der Index E auf die Ordinaten am Endknoten.

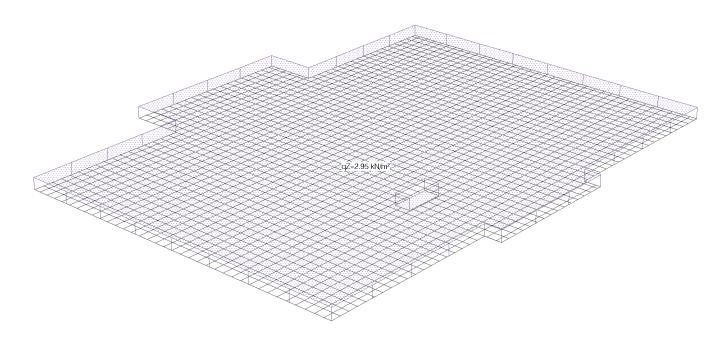
Linie	Anfpk.	Endpk.	qz	m 1	Linie	Anfpk.	Endpk.	qz	m 1
-	-	-	kN/m	kNm/m	_	-	-	kN/m	kNm/m
22	25	26	13.542	0.000	51	71	80	21.052	0.000
24	29	27	35.388	0.000	52	81	80	20.323	0.000
26	33	31	9.822	0.000	57	81	91	28.722	0.000
27	35	33	9.879	0.000	108	69	186	44.438	0.000
29	26	39	13.119	0.000	61	98	99	32.445	0.000
31	35	42	14.951	0.000	110	189	97	112.271	0.000
35	33	50	21.999	0.000	111	101	189	15.594	0.000
36	44	52	54.824	0.000	64	99	101	4.179	0.000
38	55	56	6.264	0.000	65	101	106	16.853	0.000
98	165	56	9.772	0.000	67	108	109	78.144	0.000
99	50	168	31.864	0.000	71	112	116	87.531	0.000
44	56	67	49.810	0.000	75	123	124	23.230	0.000
45	50	69	18.645	0.000	76	120	126	10.950	0.000
46	59	71	14.591	0.000	79	129	124	18.489	0.000
103	175	69	25.772	0.000	81	133	131	64.819	0.000
104	71	178	21.689	0.000	83	126	135	12.031	0.000

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer

172 kN, m, sec


Lastbilder in Lastfall 4: Nutzlasten (1/1)

Punktlasten in Lastfall 3

Punkt Syst.		Pz(Pt)	$M_{x}(M_{r})$	$M_{y}(M_{s})$
-	-	kN	kNm	kNm
211	r-s-t	1.071	0.000	0.000
212	r-s-t	1.071	0.000	0.000

LASTBILDER IN LASTFALL 4: NUTZLASTEN (1/1)

belastete Objekte in Lastfall 4

bezeichnete, belastete Objekte

Тур	Nummer	Bezeichung
Position	1	4.01 Begane grondvloer

Flächenlasten in Lastfall 4

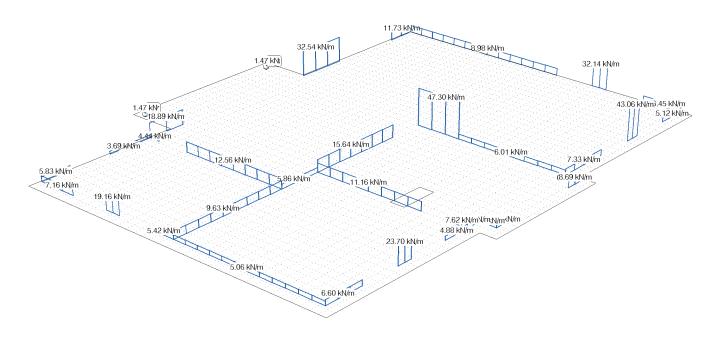
Linear veränderliche Flächenlasten werden durch Vorgabe der Lastordinaten an 3 unterschiedlichen Punkten definiert.

Flächentyp	Nr. Bezeichnung	bei Pkt.	qz	
-	-	-	kN/m2	
Position	1 4.01 Begane gro	konst.	2.950	

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer


173 kN, m, sec

Lastbilder in Lastfall 5: Nutzlast verdiepingsvl

LASTBILDER IN LASTFALL 5: NUTZLAST VERDIEPINGSVL

belastete Objekte in Lastfall 5

Die Lastbilder dieses Lastfalles wurden von den Lagerreaktionen des Bauteils "3.01 Verdiepingsvloer" importiert.

Linienlasten in Lastfall 5

Bei veränderlichen Linienlasten weist der Index A auf die Ordinaten am Anfangsknoten und der Index E auf die Ordinaten am Endknoten.

Linie	Anfpk.	Endpk.	qz	m 1	Linie	Anfpk.	Endpk.	qz	mı
-	-	-	kN/m	kNm/m	-	-	-	kN/m	kNm/m
22	25	26	7.162	0.000	51	71	80	6.588	0.000
24	29	27	19.156	0.000	52	81	80	5.093	0.000
26	33	31	5.422	0.000	57	81	91	5.728	0.000
27	35	33	5.061	0.000	108	69	186	15.642	0.000
29	26	39	5.830	0.000	61	98	99	8.689	0.000
31	35	42	6.602	0.000	110	189	97	47.302	0.000
35	33	50	9.634	0.000	111	101	189	6.012	0.000
36	44	52	23.699	0.000	64	99	101	0.211	0.000
38	55	56	3.692	0.000	65	101	106	7.334	0.000
98	165	56	4.444	0.000	67	108	109	32.544	0.000
99	50	168	12.556	0.000	71	112	116	43.064	0.000
44	56	67	18.886	0.000	75	123	124	11.731	0.000
45	50	69	5.858	0.000	76	120	126	5.122	0.000
46	59	71	4.880	0.000	79	129	124	8.977	0.000
103	175	69	11.161	0.000	81	133	131	32.138	0.000
104	71	178	7.621	0.000	83	126	135	6.446	0.000

Punktlasten in Lastfall 5

Punkt	Syst.	Pz(Pt)	M _x (M _r) kNm	My(Ms) kNm
277	r-s-t	1.470	0.000	0.000
278	r-s-t	1.470	0.000	0.000

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer

174 kN, m, sec

Beschreibung der geforderten Nachweise

BESCHREIBUNG DER GEFORDERTEN NACHWEISE

Bei Anwendung der Überlagerungsregeln nach Eurocode bedeuten:

Ψ dom	Kombinationsbeiwert für eine	führende	Verkehrslasteinwirkung	(Leiteinwirkung)
Ψsub	Kombinationsbeiwert für eine	nichtführende	Verkehrslasteinwirkung	(Begleiteinwirkung)
γsup	Teilsicherheitsbeiwert für	ungünstig	wirkende Laststellungen	
γinf	Teilsicherheitsbeiwert für	günstig	wirkende Laststellungen	

Bei Anwendung der Überlagerungsregeln nach DIN 18800 bedeuten:

Ψ_{dom}	Kombinationsbeiwert	für	eine	Hauptkombination
Ψsub	Kombinationsbeiwert	für	eine	Nebenkombination

Überlagerungsregeln Brückenbau und DIN 1055-100 verhalten sich wie Eurocode. Bei nichtlinearer Berechnung bleiben Extremalbildungsvorschriften unberücksichtigt

Werden nachfolgend Nachweise nach Eurocode aufgeführt, so gilt: Der nationale Anhang "Deutschland" wird berücksichtigt.

Nachweis 1: Gebrauchsnachweis

Schnittgrößenermittlung: Schnittgrößenermittlung ohne Nachweise

1: Generierungsvorschrift 1

Generierungsvorschrift zum Nachweis 1, Typ: standard, Überlagerungsregel: charakteristisch

Lastkollektive der Generierungsvorschrift 1 zum Nachweis 1

Faktorisierung der Lastfälle. Negative Lastfallnummern beziehen sich auf Imperfektionen

LK	1	2	3	4	5
1	1.00	1.00	1.00	-	-
2	1.00	1.00	1.00	1.00	-
3	1.00	1.00	1.00	-	1.00
4	1.00	1.00	1.00	1.00	1.00

Nachweis 2: EC 2 Bemessung

EC 2 Bemessung: Tragfähigkeit nach Eurocode 2 (6.1, 6.2, 6.3)

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer

175 kN, m, sec

Beschreibung der geforderten Nachweise

Nachweisoptionen zum Nachweis 2:

Bie	gebemessung								
\checkmark	Schubbemessung (Begrenzung von z nur NA-DE)								
	z aus Biegebemessung								
	$z = 0.9 d \le d - 2 cv$								
	z aus Biegebem. ≤ d - 2 cv								
	Bemessung in den Bewehrungsrichtungen								
	Bemessung in Hauptquerkraftrichtung								
	☐ VRdct NICHT begrenzen								
	mit Mindest-/Querbewehrung (Biegung, Schub)								

1: Generierungsvorschrift 1

Generierungsvorschrift zum Nachweis 2, Typ: standard, Überlagerungsregel: Eurocode

Lastkollektive der Generierungsvorschrift 1 zum Nachweis 2

Faktorisierung der Lastfälle. Negative Lastfallnummern beziehen sich auf Imperfektionen

LK	1	2	3	4	5	LK	1	2	3	4	5
1	1.00	1.00	1.00	1.50	-	4	1.35	1.35	1.35	-	1.50
2	1.35	1.35	1.35	1.50	-	5	1.00	1.00	1.00	1.50	1.50
3	1.00	1.00	1.00	-	1.50	6	1.35	1.35	1.35	1.50	1.50

Tabelle der zu bemessenden Flächenpositionen (Nachweis 2)

Erläuterungen: Spalte (M): Mindestbewehrung für Platten; Spalte (Q): Querbewehrung - Mindestanteil an der Hauptbewehrung Spalte (S): Schubbemessung ('ohne' bzw. 'mit' Schubmindestbewehrung); Spalte (P): Schubbewehrung möglichst vermeiden (Erhöhung der Längsbew.) BSt_I, BSt_q: Betonstahlgüte für die Längs-, Schubbewehrung ('Gitter': Synonym für Gitterträger mit f_{yk} = 420 MN/m². Es werden KEINE zulassungsspezifischen Nachweise geführt!); c_√D: Betondeckung der Druckbewehrung; ⊕: Druckstrebenwinkel (0 = minimal, * = vereinf. Annahme); αq: Winkel der Querkraftbewehrung; Spalte (**F**): Fuge; Spalte (**O**): Oberflächenbeschaffenheit der Fuge Spalte (**Z**): Zugspannung senkrecht zur Fuge. Bei angehängten Lasten ist die Aufhängebewehrung separat zu ermitteln.

Beschreibung des Materials siehe 'Materialeigenschaften der Position'

Pos.	Beton	BSt_1	(M)	(Q)	(S)	BSt_q	Cv,D	Θ	(P) α	q (F)	(0)	(Z)
							cm	0	0			
1	C20/25	500	ja	0.20	mit	500	2.0	0	nein 90	.0 nein		

Tabelle der zu bemessenden Stäbe (Nachweis 2)

Erläuterungen: Spalte (M): Mindestbewehrung für Träger

Spalte (S): Schubbemessung ('ohne' bzw. 'mit' Schubmindestbew.); BStı, BStıq: Betonstahlgüte für die Längs-, Schubbewehrung cv.D: Betondeckung der Druckbewehrung; ©: Druckstrebenwinkel (0 = minimal, * = vereinf. Annahme)

Spalte (F): Fuge; Spalte (O): Oberflächenbeschaffenheit der Fuge; bj: Fugenbreite (0 = Stegbreite)

Spalte (Z): Zugspannung senkrecht zur Fuge. Bei angehängten Lasten ist die Aufhängebewehrung separat zu ermitteln.

Spalte (W): Wirksamkeitsfaktor der Rundbügel (nur Kreisquerschnitte); teff: Torsion, effektive Wanddicke (0 = nach Norm)

weitere Erläuterungen s. Flächenpositionen; Beschreibung des Materials siehe 'Materialeigenschaften der Stäbe'

Stab	Beton	BSt ₁	(M)	(S)	BSt_q	Cv,D	Θ	(F)	(0)	bj	(Z)	(W)	t_{eff}
						cm	0			cm		-	cm
1	C20/25	500	ja	mit	500	3.0	0	nein				-,-	0.0
2	C20/25	500	ja	mit	500	3.0	0	nein					0.0
3	C20/25	500	ja	mit	500	3.0	0	nein					0.0
4	C20/25	500	ja	mit	500	3.0	0	nein					0.0
6	C20/25	500	ja	mit	500	3.0	0	nein					0.0
10	C20/25	500	ja	mit	500	3.0	0	nein					0.0
11	C20/25	500	ja	mit	500	3.0	0	nein					0.0
12	C20/25	500	ja	mit	500	3.0	0	nein					0.0
13	C20/25	500	ja	mit	500	3.0	0	nein					0.0
14	C20/25	500	ja	mit	500	3.0	0	nein					0.0

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer

176 kN, m, sec

Nationale Anhänge zu den Eurocodes

Tabelle der zu bemessenden Stäbe (Nachweis 2)

Erläuterungen: Spalte (M): Mindestbewehrung für Träger
Spalte (S): Schubbemessung ('ohne' bzw. 'mit' Schubmindestbew.); BStı, BSt₁; Betonstahlgüte für die Längs-, Schubbewehrung cʌˌD: Betondeckung der Druckbewehrung; ⊚: Druckstrebenwinkel (0 = minimal, * = vereinf. Annahme)
Spalte (F): Fuge; Spalte (O): Oberflächenbeschaffenheit der Fuge; b¡: Fugenbreite (0 = Stegbreite)
Spalte (Z): Zugspannung senkrecht zur Fuge. Bei angehängten Lasten ist die Aufhängebewehrung separat zu ermitteln. Spalte (W): Wirksamkeitsfaktor der Rundbügel (nur Kreisquerschnitte); teff: Torsion, effektive Wanddicke (0 = nach Norm)

weitere Erläuterungen s. Flächenpositionen; Beschreibung des Materials siehe 'Materialeigenschaften der Stäbe'

Stab	Beton	BSt_1	(M)	(S)	BSt_q	Cv,D	Θ	(F)	(0)	bj	(Z)	(W)	t_{eff}
						cm	0			cm		-	cm
15	C20/25	500	ja	mit	500	3.0	0	nein					0.0
16	C20/25	500	ja	mit	500	3.0	0	nein					0.0

NATIONALE ANHÄNGE ZU DEN EUROCODES

Lastfaktoren (Hochbau) des nationalen Anhangs

Deutschland

Teilsicherheitsfaktoren für Einwirkungen

der ständigen und vorübergehenden Bemessungssituation

Einwirkungsart	γ Fsup	y Finf
ständige Lasten	1.35	1.00
veränderliche Lasten	1.50	0.00
Flüssigkeitsdruck/Maschinenlasten	1.35	0.00
Zwang	1.00	0.00
Vorspannung	1.00	1.00

Teilsicherheitsfaktoren für Einwirkungen

der Erdbebenbemessungssituation

Einwirkungsart	y Fsup	7 Finf
ständige Lasten	1.00	1.00
veränderliche Lasten	1.00	0.00
Flüssigkeitsdruck/Maschinenlasten	1.00	0.00
Zwang	1.00	0.00
Vorspannung	1.00	1.00
Erdbeben	1.00	1.00

Teilsicherheitsfaktoren für Einwirkungen der außergewöhnlichen Bemessungssituation

Einwirkungsart	γFsup	γFinf
ständige Lasten	1.00	1.00
veränderliche Lasten	1.00	0.00
Flüssigkeitsdruck/Maschinenlasten	1.00	0.00
Zwang	1.00	0.00
Vorspannung	1.00	1.00
außergewöhnliche Einwirkungen	1.00	1.00

Teilsicherheitsfaktoren für Einwirkungen der Gebrauchstauglichkeits- und Ermüdungsnachweise

Einwirkungsart	y Fsup	γFinf
ständige Lasten	1.00	1.00
veränderliche Lasten	$1.00 \\ 1.00$	0.00
Flüssigkeitsdruck/Maschinenlasten	1.00	0.00
Zwang	1.00	0.00
Vorspannung	1.00	1.00

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer

Seite 177 kN, m, sec

Nationale Anhänge zu den Eurocodes

Kombinationsbeiwerte

Die Werte in der Ψ_2 E-Spalte sind die Ψ_2 -Werte für die Erdbebenbemessungssituation

Einwirkung	Kategorie	Ψ0	Ψ1	Ψ2	Ψ_{2E}
Wohn-, Büroräume	A, B	0.70	0.50	0.30	0.30
Versammlungs-, Verkaufsräume	C, D	0.70	0.70	0.60	0.60
Lagerräume	E	1.00	0.90	0.80	0.80
Fahrzeuge bis 30 kN	F	0.70	0.70	0.60	0.60
Fahrzeuge bis 160 kN	G	0.70	0.50	0.30	0.30
Dächer	Н	0.00	0.00	0.00	0.00
Schnee/Eis bis 1000 m ü.NN		0.50	0.20	0.00	0.50
Schnee/Eis über 1000 m ü.NN		0.70	0.50	0.20	0.50
Wind		0.60	0.20	0.00	0.00
Temperatur		0.60	0.50	0.00	0.00
Baugrundsetzungen		1.00	1.00	1.00	1.00
sonstige Einwirkungen		0.80	0.70	0.50	0.50

Anmerkung: Flüssigkeitsdruck/Maschinenlasten, Zwang sowie Baugrundsetzungen, sonstige Einwirkungen sind nicht Teil der EN 1990 (Eurocode).

Ausgewählte Bemessungsparameter des nationalen Anhangs

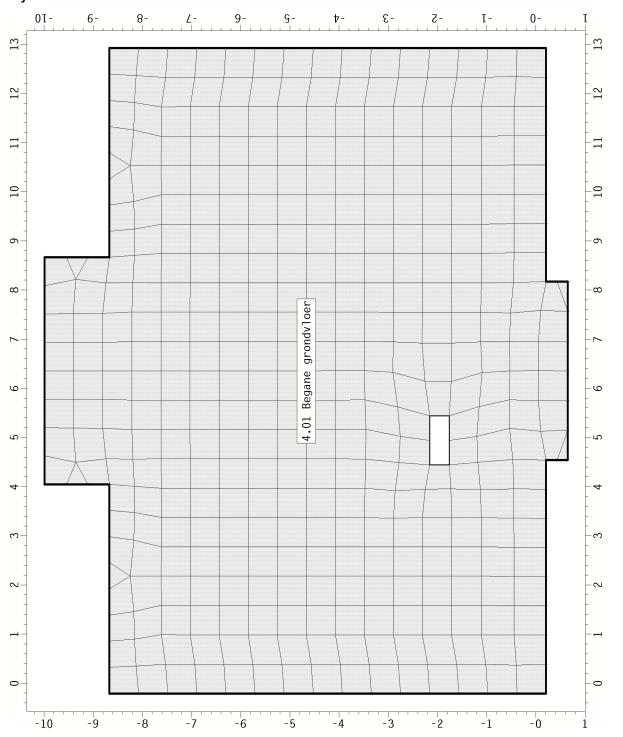
Deutschland

DIN EN 1992-1-1 (EC 2, Hochbau)

Kapitel	Wert	Bedeutung
2.4.2.4(1)		Teilsicherheitsbeiwerte für Beton und Betonstahl
	$\gamma_{\rm C} = 1.50 \gamma_{\rm S} = 1.15$	ständige und vorübergehende Bemessungssituation
	$\gamma_{c} = 1.50 \gamma_{s} = 1.15$	Bemessungssituation für Ermüdung
	$\gamma_{\rm c} = 1.50 \gamma_{\rm s} = 1.15$	Bemessungssituation für Erdbeben
	$\gamma_{\rm C} = 1.30 \gamma_{\rm S} = 1.00$	außergewöhnliche Bemessungssituation
2.4.2.4(2)	$\gamma_{\rm c} = 1.00 \gamma_{\rm s} = 1.00$	Grenzzustand der Gebrauchstauglichkeit
3.1.6(1)P	$\alpha_{\rm cc} = 0.85$	Abminderungsbeiwert für die Betondruckfestigkeit
3.1.6(2)P	$\alpha_{\text{ct}} = 1.00$	Abminderungsbeiwert für die Betonzugfestigkeit
6.2.2(1)	$C_{Rd,c} = 0.15 / \gamma_c$	Beiwerte zur Ermittlung des Querkraftwiderstandes
	$v_{min} = 0.0525/\gamma_c k^{3/2} f_{ck}^{1/2}$, and the second
	$k_1 = 0.12$	
6.2.2(6)	$\mathbf{v}\mathbf{v} = 0.675$	Festigkeitsabminderungsbeiwert für Querkraft
6.3.2(4)	$\mathbf{v}_{T} = 0.525$	Festigkeitsabminderungsbeiwert für Torsion
6.2.3(2)	min cot $\Theta = 1.00$	untere Grenze der Druckstrebenneigung
	$\max \cot \Theta = 3.00$	obere Grenze der Druckstrebenneigung
6.2.3(3)	$\alpha_{\text{CW}} = 1.00$	Beiwert zur Berücksichtigung des Spannungszustands im Druckgurt
	$\mathbf{v}_1 = 0.750$	Beiwert zur Ermittlung der maximalen Querkrafttragfähigkeit
6.2.5(1)	$c = 0.50$, $\mu = 0.90$, $v = 0.70$	Fugen: Rauhigkeitsbeiwerte für verzahnte Fugen
	$c = 0.40, \mu = 0.70, \nu = 0.50$	raue Fugen
	$c = 0.20$, $\mu = 0.60$, $v = 0.20$	glatte Fugen
	$c = 0.00, \mu = 0.50, v = 0.00$	sehr glatte Fugen
6.8.4(1)	γ F,fat = 1.00	Ermüdung: Sicherheitsbeiwert für die Einwirkungen
6.8.7(1)	$k_1 = 1.00$	Ermüdung: Beiwert zur Ermittlung der Bemessungsfestigkeit des Betons
7.3.4(3)	$k_3 = 0.00$	Risse: Beiwert zur Ermittlung des maximalen Rissabstands bei
		abgeschlossenem Rissbild
	$k_4 = 0.278$	Risse: Beiwert zur Ermittlung des maximalen Rissabstands bei
		abgeschlossenem Rissbild
9.2.1.1(1)	As,min s. NA-DE	Mindestbewehrung für Balken und Platten [cm²]
9.2.2(5)	ρw,min s. NA-DE	Mindestbewehrungsgrad der Querkraftbewehrung
11.3.5(1)	α lcc = 0.75	Leichtbeton: Abminderungsbeiwert für die Betondruckfestigkeit
11.3.5(2)	$\alpha 1 ct = 1.00$	Leichtbeton: Abminderungsbeiwert für die Betonzugfestigkeit
11.6.1(1)	$C_{1Rd,c} = 0.15 / \gamma_c$	Leichtbeton: Beiwerte zur Ermittlung des Querkraftwiderstandes
	$v_{1,min} = 0.0525 k^{3/2} f_{1ck}^{1/2}$	
	$k_{11} = 0.12$	

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 4.01 Begane grondvloer

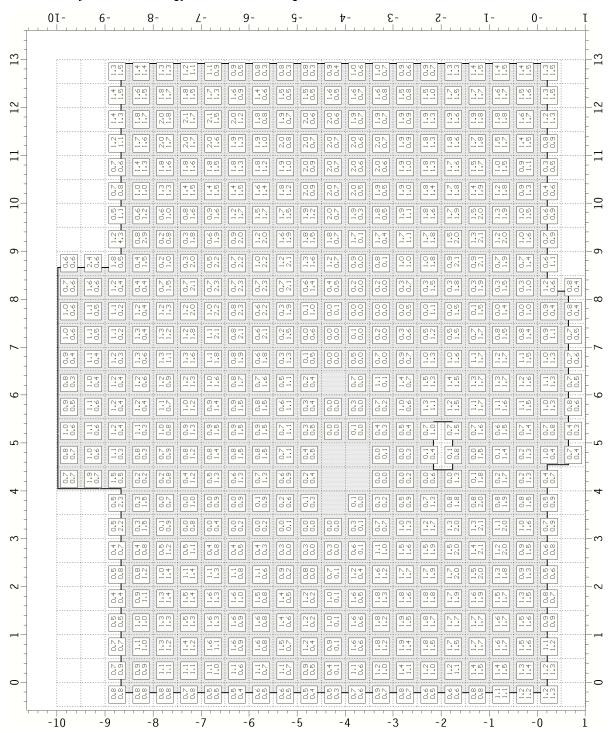
Seite 178 kN, m, sec

Kapitel	Wert	Bedeutung
11.6.1(2)	$v_1 = 0.675 \eta_1$	Leichtbeton: Festigkeitsabminderungsbeiwert für Querkraft
	$\mathbf{v}_1 = 0.525 \ \mathbf{\eta}_1$	Leichtbeton: Festigkeitsabminderungsbeiwert für Torsion
11.6.2(1)	$\mathbf{v}_{11} = 0.750 \ \mathbf{\eta}_{1}$	Leichtbeton: Beiwert zur Ermittlung der maximalen
		Querkrafttragfähigkeit

Systeem

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 4.01 Begane grondvloer

Seite 179 kN, m, sec

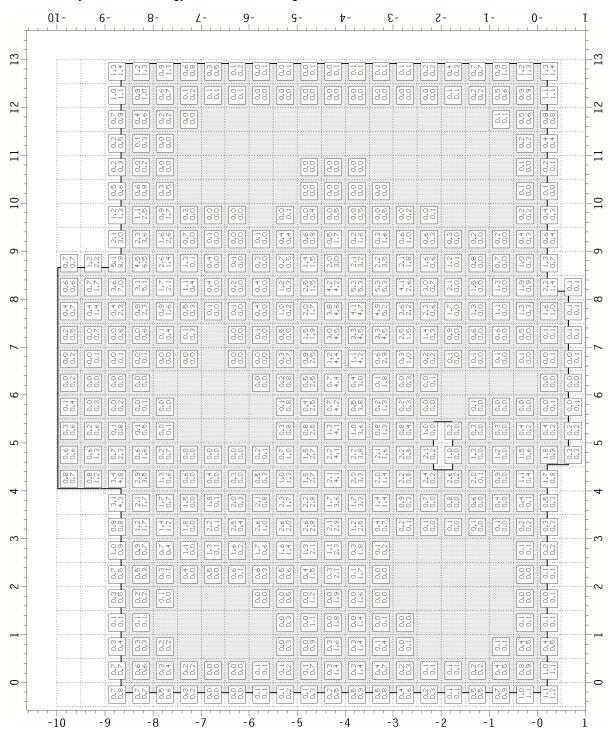
Bovenwapening [cm²/m]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Zahlenwerte aso, Längsbewehrung (oben) als Abs-Max-Raster, (0.50 m * 0.50 m)-Raster um (0.00 m, 0.00 m) Min/Max/Grenzwert (je Zeile): as1o: 0.0/2.4/0.0 cm2/m, as2o: 0.0/4.3/0.0 cm2/m

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 4.01 Begane grondvloer

Seite 180 kN, m, sec

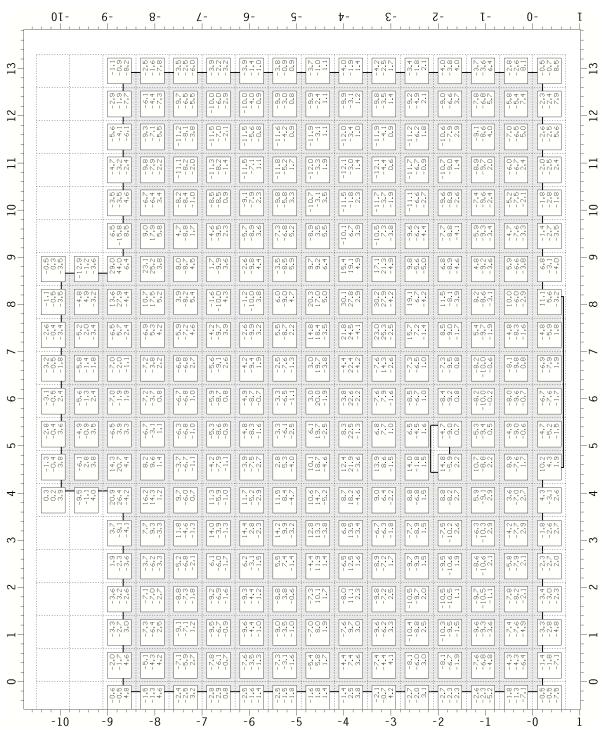
Onderwapening [cm²/m]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Zahlenwerte asu, Längsbewehrung (unten) als Abs-Max-Raster, (0.50 m * 0.50 m)-Raster um (0.00 m, 0.00 m) Min/Max/Grenzwert (je Zeile): as1u: 0.0/5.3/0.0 cm2/m, as2u: 0.0/8.9/0.0 cm2/m

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 4.01 Begane grondvloer

Seite 181 kN, m, sec

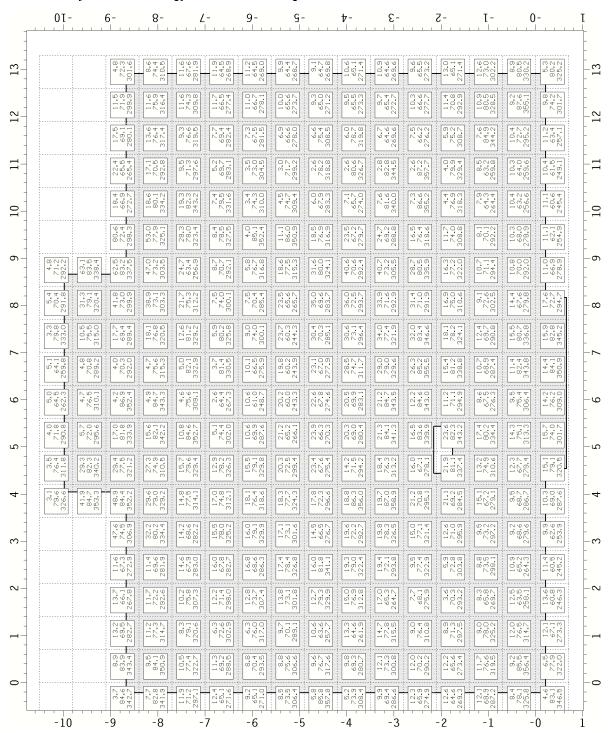
Interne kracht [kNm/m]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Zahlenwerte ext mxx,myy,mxy, extr. Momente als Abs-Max-Raster, (0.70 m * 0.70 m)-Raster um (0.00 m, 0.00 m) Min/Max/Grenzwert (je Zeile): mxx: -12.9/ 30.2/ 0.0 kNm/m, myy: -15.8/ 44.0/ 0.0 kNm/m, mxy: -8.2/ 8.5/ 0.0 kNm/m

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 4.01 Begane grondvloer

182 kN, m, sec

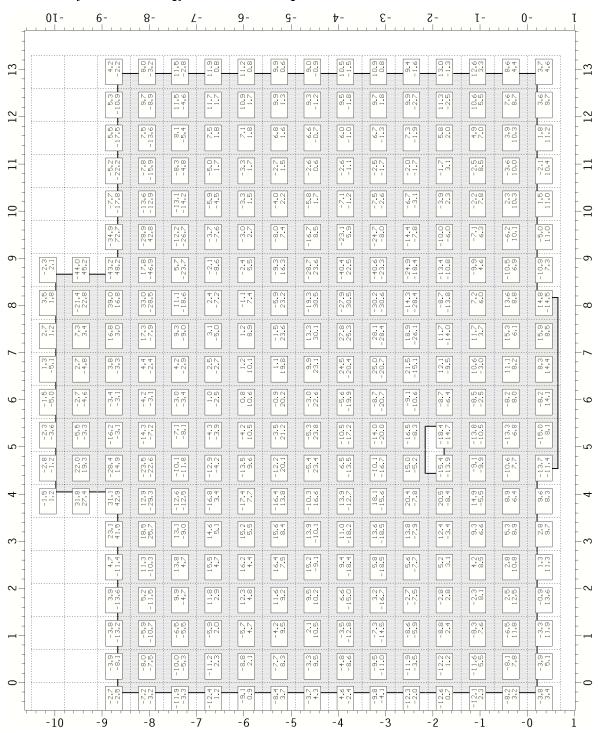
Interne kracht vEd/vRd [kN/m]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Zahlenwerte vEd, vRd, Bemessungsquerkraft, Querkrafttragfähigkeit als Abs-Max-Raster, (0.70 m * 0.70 m)-Raster um (0.00 m, 0.00 m) Min/Max/Grenzwert (je Zeile): vEd: 0.3/80.6/ 0.0 kN/m, vRdct: 59.8/87.6/ 0.0 kN/m, vRdmx: 242.3/358.9/ 0.0 kN/m

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 4.01 Begane grondvloer

183 kN, m, sec

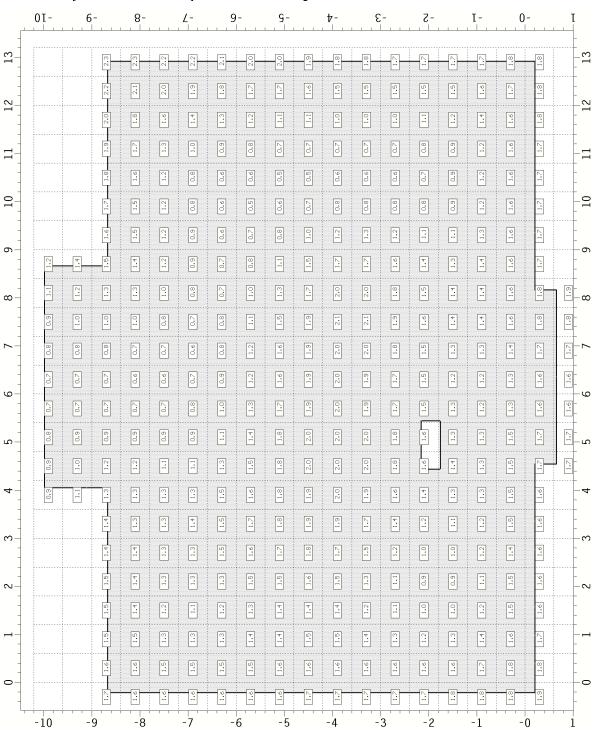
Interne kracht [kN/m]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Zahlenwerte absmax qx,qy, abs. max. Querkräfte als Abs-Max-Raster, (0.70 m * 0.70 m)-Raster um (0.00 m, 0.00 m) Min/Max/Grenzwert (je Zeile): qx: -44.0/ 39.0/ 0.0 kN/m, qy: -46.9/ 72.7/ 0.0 kN/m

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 4.01 Begane grondvloer

Seite 184 kN, m, sec

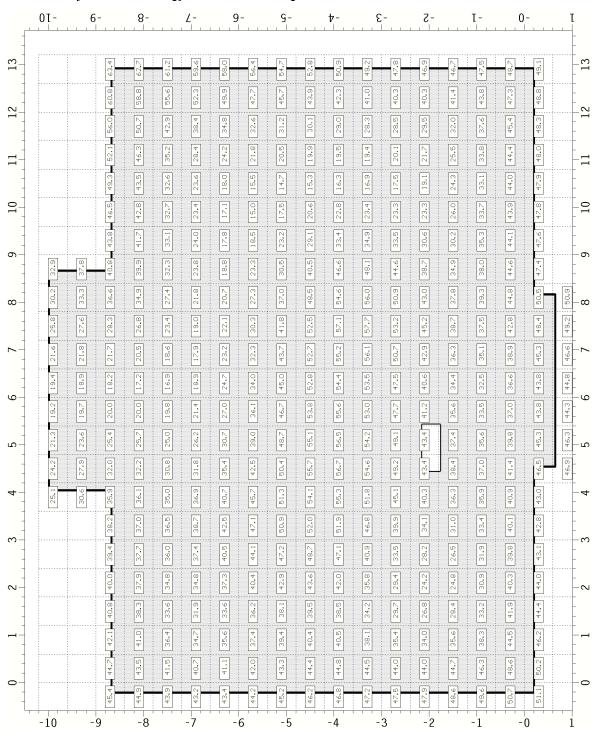
Vervorming [mm]

Nachweis 1 [Gebrauchsnachweis]: Zusammenfassung

Zahlenwerte ext uz, extr. Durchbiegungen als Abs-Max-Raster, (0.60 m * 0.60 m)-Raster um (0.00 m, 0.00 m) Min/Max/Grenzwert (je Zeile): uz: 0.3/2.3/0.0 mm

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 4.01 Begane grondvloer

185 kN, m, sec

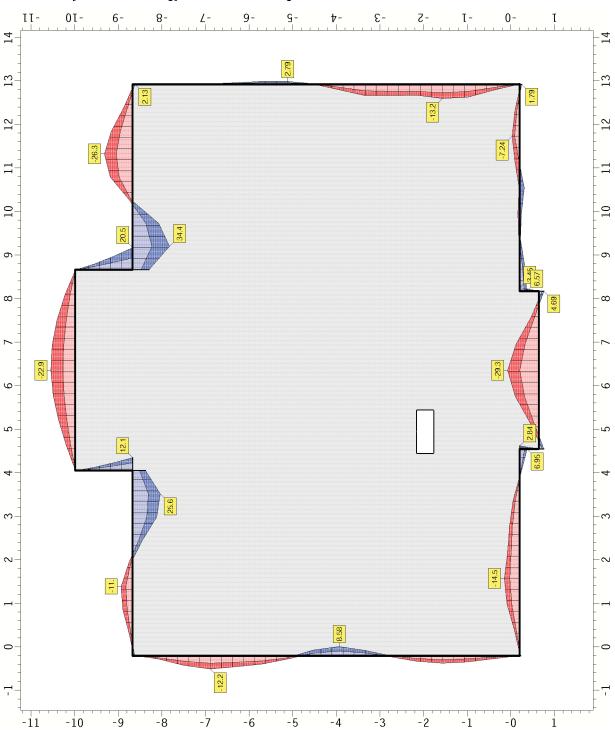
Contactspanning [kN/m²]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Zahlenwerte ext obz, extr. Bodenpressung als Abs-Max-Raster, (0.60 m * 0.60 m)-Raster um (0.00 m, 0.00 m) Min/Max/Grenzwert (je Zeile): obz: 6.4/63.4/ 0.0 kN/m2

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 4.01 Begane grondvloer

Seite 186 kN, m, sec

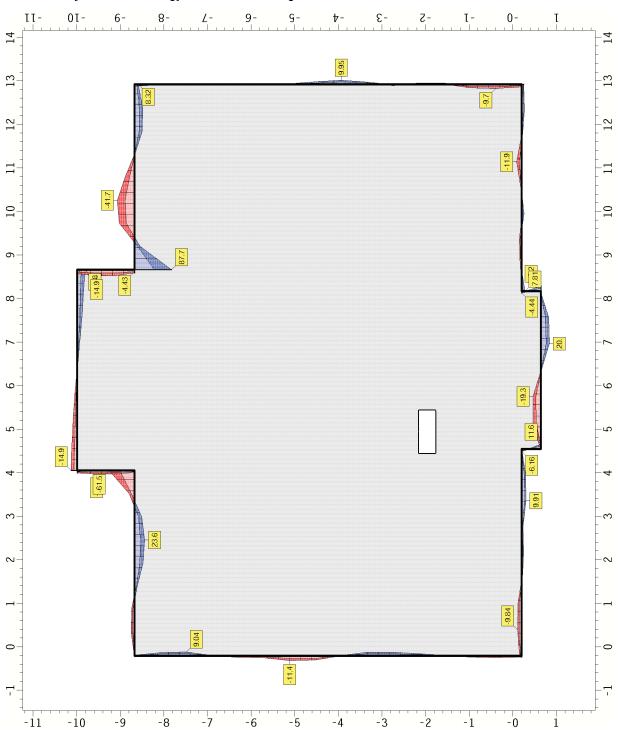
Interne kracht (Balken) [kNm]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

 $\frac{Grenzlinien\ ext\ M_{11},\ extr.\ Moment\ um\ \eta\text{-Achse: Faktor: }2.E\text{-}2}{Min/Max:\ ext\ M_{11}\text{: -}29.25/34.39\ kNm}$

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 4.01 Begane grondvloer

Seite 187 kN, m, sec

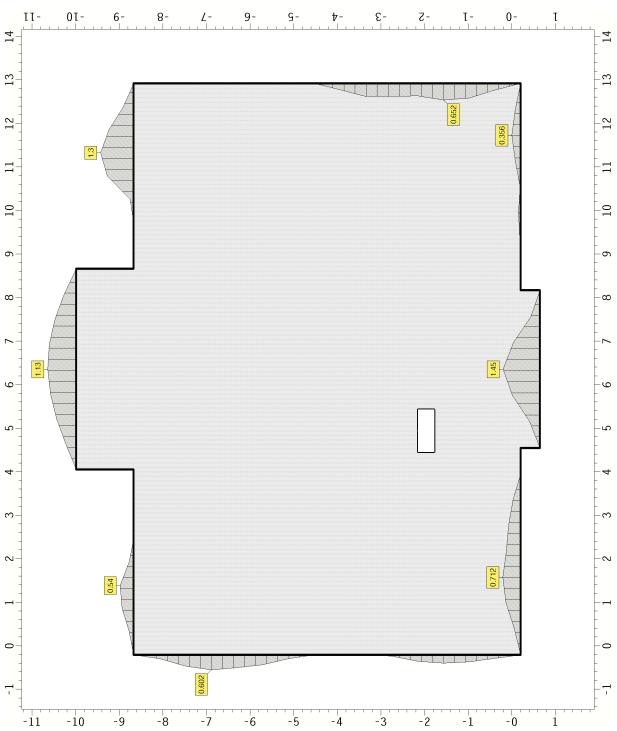
Interne kracht (Balken) [kN]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

 $\frac{\text{Grenzlinien ext } Q\zeta, \text{ extr. Querkraft in } \zeta\text{-Richtung: Faktor: 10.E-3}}{\text{Min/Max: ext } Q\zeta\text{: -61.45/87.73 kN}}$

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 4.01 Begane grondvloer

Seite 188 kN, m, sec

Bovenwapening (Balken) [cm²]

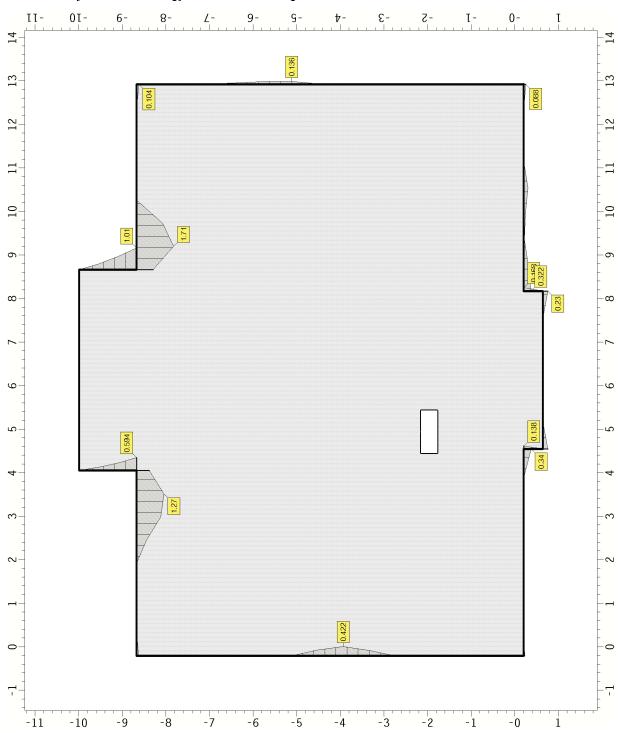
Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Grenzlinien Aso, Bewehrung oben: Faktor: 0.582

Max: Aso: 1.45 cm2

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321

Projekt: 4010-Leever


Bauteil: 4.01 Begane grondvloer

Seite 189 kN, m, sec

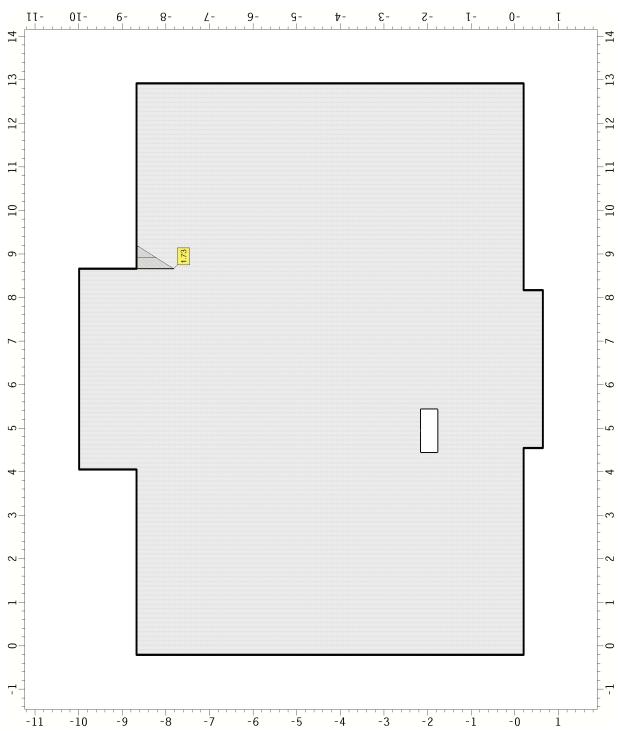
Onderwapening (Balken) [cm²]

Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Grenzlinien Asu, Bewehrung unten: Faktor: 0.494

Max: Asu: 1.71 cm2

Industriestrasse 2, 26899 Rhede tel. 04964/604-320, Fax 604-321


Projekt: 4010-Leever

Bauteil: 4.01 Begane grondvloer

Seite 190 kN, m, sec

2D wapening (Balken) [cm²/m] Nachweis 2 [EC 2 Bemessung]: Zusammenfassung

Grenzlinien asbQ, Bügelbewehrung infolge Querkraft (gesamt): Faktor: 0.49

Max: asbQ: 1.73 cm2/m

Rhede, den 06/02/2018

Ing.-Büro Bernh. Grummel
Industriestraße 2
26899 Rhede

Tel. 04964 / 604 320 Fax 604 321

Dipl.-Ing. V. Seel